Robust Connectivity of Graphs on Surfaces

Maximum Leaf Number \equiv Minimum Connected Dominating Set

Definition (Maxleaf Number)

 $\Lambda(T) :=$ the set of leaves in a tree T. $\tau_G :=$ the set of all spanning trees in G. The *maxleaf number* of a graph G is:

 $\ell(G) := \max_{T \in \tau_G} |\Lambda(T)|.$

Maximum Leaf Number \equiv Minimum Connected Dominating Set

Definition (Maxleaf Number)

 $\Lambda(T) :=$ the set of leaves in a tree T. $\tau_G :=$ the set of all spanning trees in G. The *maxleaf number* of a graph G is:

 $\ell(G) := \max_{T \in \tau_G} |\Lambda(T)|.$

- Garey & Johnson '79: NP-complete on planar graphs of max deg 4.
- Storer '81: G cubic has $\ell(G) \ge \lceil \frac{n}{4} + 2 \rceil$.
- Kleitman & West '91: Conn. G of min deg k: $\ell(G) \ge (1 \frac{2.51 \ln k}{k})n$.

Robust Connectivity—Definition

$\Lambda(T) :=$ the set of leaves in a tree T. $\tau_G :=$ the set of all spanning trees in G.

Bradshaw, Masařík, Novotná, Stacho

Robust Connectivity of Graphs on Surfaces

Robust Connectivity—Definition

Robust Connectivity—Previous Results

Theorem (BMS '20)

If $\Delta \geq 3$, then there exists $\varepsilon = \varepsilon(\Delta) > 0$ such that if G is a 3-connected graph of maximum degree Δ , then $\kappa_{\rho}(G) \geq \varepsilon$.

Robust Connectivity—Previous Results

Theorem (BMS '20)

If $\Delta \geq 3$, then there exists $\varepsilon = \varepsilon(\Delta) > 0$ such that if G is a 3-connected graph of maximum degree Δ , then $\kappa_{\rho}(G) \geq \varepsilon$.

R

Robust Connectivity—Genus Bound

Theorem (BMNS '21)

If $r \geq 3$ and G is an r-connected graph of Euler genus γ , then

$$\kappa_{\rho}(G) \ge \frac{1}{27} \gamma^{-1/r}.$$

Albertson & Berman Conjecture '79

Conjecture (Albertson & Berman Conjecture '79)

If G is a planar graph on n vertices, then G contains an induced forest of size at least n/2.

Theorem (Borodin '76)

If G is a planar graph on n vertices, then G contains an induced forest of size at least $\frac{2n}{5}$.

Known on Some Subclasses of Planar Graphs

- Hosono '90: Outerplanar.
- Salavatipour '06: Triangle-free planar.
- Kelly & Liu '17 / Shi & Xu '16: Planar of girth 5.

Surface Connectivity

 $\tilde{G} :=$ Some specific **embedding of** G.

 $m(\tilde{G}) := \#$ of vertices in a largest induced embedded subgraph $\tilde{G}' \subseteq \tilde{G}$ for which $S \And \tilde{G}'$ is a connected surface.

Definition (Surface Connectivity)

The surface connectivity $\kappa_s(S)$ of a surface S is defined as follows:

$$\kappa_s(S) = \inf \left\{ \frac{m(\tilde{G})}{|\tilde{G}|} : \tilde{G} \in \mathcal{G}_S \right\}.$$

Surface Connectivity

 $\tilde{G} :=$ Some specific embedding of G. $m(\tilde{G}) :=$ # of vertices in a largest induced embedded subgraph $\tilde{G'} \subseteq \tilde{G}$ for which $S \And \tilde{G'}$ is a connected surface.

Definition (Surface Connectivity)

The surface connectivity $\kappa_s(S)$ of a surface S is defined as follows:

$$\kappa_s(S) = \inf \left\{ \frac{m(\tilde{G})}{|\tilde{G}|} : \tilde{G} \in \mathcal{G}_S \right\}.$$

Theorem (BMNS '21)

Let *S* be a surface. Every graph *G* with an **edge-maximal** embedding on *S* satisfies $\kappa_{\rho}(G) \ge k$ if and only if $\kappa_s(S) \ge k$.

Surface Connectivity—Albertson & Berman Relation

Theorem (BMNS '21)

Let *S* be a surface. Every graph *G* with an **edge-maximal** embedding on *S* satisfies $\kappa_{\rho}(G) \ge k$ if and only if $\kappa_s(S) \ge k$.

Conjecture (Albertson & Berman Conjecture '79)

If G is a planar graph on n vertices, then G contains an induced forest of size at least n/2.

Theorem (BMNS '21)

Let S be a plane. Every planar triangulation G satisfies $\kappa_{\rho}(G) \geq \frac{1}{2}$ if and only if $\kappa_s(S) \geq \frac{1}{2}$ (i.e., \exists large subgraph without cycles).

Surface Connectivity—Albertson & Berman Relation

Theorem (BMNS '21)

Let *S* be a surface. Every graph *G* with an **edge-maximal** embedding on *S* satisfies $\kappa_{\rho}(G) \ge k$ if and only if $\kappa_s(S) \ge k$.

Conjecture (Albertson & Berman Conjecture '79)

If G is a planar graph on n vertices, then G contains an induced forest of size at least n/2.

Theorem (BMNS '21)

Let *S* be a plane. Every planar triangulation *G* satisfies $\kappa_{\rho}(G) \ge \frac{1}{2}$ if and only if $\kappa_s(S) \ge \frac{1}{2}$ (i.e., \exists large subgraph without cycles).

Conjecture (BMNS '21)

If G is a planar triangulation on n vertices, then $\kappa_{\rho}(G) \geq \frac{1}{2}$.

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \geq k$ if and only if $\kappa_{s}(S) \geq k$.

Start with: \tilde{G} an edge-maximal embedding on S and some $R \subseteq V(G)$

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Start with: \tilde{G} an edge-maximal embedding on S and some $R \subseteq V(G)$.

Lemma

Let \tilde{G} be an edge-maximal emedding of G in a surface S and let $\tilde{G}' \subseteq \tilde{G}$. If $S \wr \tilde{G}'$ is a connected surface, then $G \setminus G'$ is a connected.

Easy Cases Implies
$$k \le \frac{1}{2}$$
 $|V(G)| \ge 3.$ G is 3-connected. \square \square \square \square \square \square

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Start with: \tilde{G} an edge-maximal embedding on S and some $R \subseteq V(G)$.

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Start with: \tilde{G} an edge-maximal embedding on S and some $R \subseteq V(G)$.

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Lemma

Let \tilde{G} be an edge-maximal emedding of G in a surface S and let $\tilde{G}' \subseteq \tilde{G}$. If $S \And \tilde{G}'$ is a connected surface, then $G \setminus G'$ is a connected.

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_o(G) \ge k \leftarrow \kappa_s(S) \ge k$.

Lemma

Let G be an edge-maximal emedding of G in a surface S and let $\tilde{G}' \subseteq \tilde{G}$. If $S \not X \tilde{G}'$ is a connected surface, then $G \setminus G'$ is a connected.

G does not have any dominating vertex

$$\exists R' \subseteq R |R'| \geq k |R| \& G[R'] & S$$

connected

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Lemma

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Lemma

Theorem (BMNS '21)

Let S be a surface. Every graph G with an edge-maximal embedding on S satisfies $\kappa_{\rho}(G) \ge k \Leftarrow \kappa_s(S) \ge k$.

Lemma

Let \tilde{G} be an edge-maximal emedding of G in a surface S and let $\tilde{G}' \subseteq \tilde{G}$. If $S \And \tilde{G}'$ is a connected surface, then $G \setminus G'$ is a connected.

G does not have any dominating vertex

Open Problems

Open Problems

Conjecture (BMNS '21)

If G is a planar triangulation on n vertices, then $\kappa_{\rho}(G) \geq \frac{1}{2}$.

Determine Surface Connectivity for Higher Surfaces For S torus: $\kappa_s(S) \leq \frac{3}{7}$. Is it also $\kappa_s(S) \geq \frac{3}{7}$?

Question (Maxleaf for Planar Triangulations)

Is the maxleaf number of a planar triangulation on n vertices always at least $\frac{2}{3}n$?

Open Problems

Conjecture (BMNS '21)

If G is a planar triangulation on n vertices, then $\kappa_{\rho}(G) \geq \frac{1}{2}$.

Determine Surface Connectivity for Higher Surface	ces
For S torus: $\kappa_s(S) \leq \frac{3}{7}$.	Is it also $\kappa_s(S) \geq rac{3}{7}$?

Question (Maxleaf for Planar Triangulations)

Is the maxleaf number of a planar triangulation on n vertices always at least $\frac{2}{3}n$?