Flexibility of Planar Graphs

Tomáš Masařík Joint work with: Zdeněk Dvořák, Jan Musílek, and Ondřej Pangrác

Definitions

A weighted request is a function \(w \) that to each pair \((v, c)\) with \(v \in V(G) \) and \(c \in L(v) \) assigns a nonnegative real number.

Let \(w(G, L) = \sum_{v \in V(G), c \in L(v)} w(v, c) \). For \(\varepsilon > 0 \), we say that \(w \) is \(\varepsilon \)-satisfiable if there exists an \(L \)-coloring \(\varphi \) of \(G \) such that \(\sum_{v \in V(G)} w(v, \varphi(v)) \geq \varepsilon \cdot w(G, L) \).

We say that a graph \(G \) with the list assignment \(L \) is:

- \(\varepsilon \)-flexible if every request is \(\varepsilon \)-satisfiable,
- weighted \(\varepsilon \)-flexible if every weighted request is \(\varepsilon \)-satisfiable.

Previous Results

Dvořák, Norin, Postle: List coloring with requests. JGT 19'

There exists \(\varepsilon > 0 \) such that every planar graph

- of girth at least 12 and with an assignment of lists of size 3 is \(\varepsilon \)-flexible,
- of girth at least 5 and with an assignment of lists of size 4 is \(\varepsilon \)-flexible.

with an assignment of lists of size 6 is \(\varepsilon \)-flexible.

Our Results

There exists \(\varepsilon > 0 \) such that every planar graph

- of girth at least 6 and with an assignment of lists of size 3 is weighted \(\varepsilon \)-flexible,
- without triangles and with an assignment of lists of size 4 is \(\varepsilon \)-flexible,
- without 4-cycles and with an assignment of lists of size 5 is weighted \(\varepsilon \)-flexible.

Key Technique

For a function \(f : V(G) \rightarrow \mathbb{Z} \) and a vertex \(v \in V(H) \), let \(f_v \) denote the function such that \((f_v)(w) = f(w) \) for \(w \neq v \) and \((f_v)(v) = 1 \).

Suppose \(H \) is an induced subgraph of another graph \(G \). For integers \(k \geq 3 \) and \(d \geq 0 \), we say that \(H \) is a \((d, k) \)-reducible induced subgraph of \(G \) if

\begin{align*}
\text{FIX} & \quad \text{for every } v \in V(H), H \text{ is } L\text{-colorable for every } (k + \deg_G - \deg_H \downarrow v)\text{-assignment } L, \text{ and}
\text{FORB} & \quad \text{for every } d\text{-independent set } I \text{ in } H \text{ of size at most } k - 2, H \text{ is } L\text{-colorable for every } (k + \deg_G - \deg_H - 1)\text{-assignment } L.
\end{align*}

Lemma. For all integers \(g, k \geq 3 \) and \(b \geq 1 \), there exists \(\varepsilon > 0 \) as follows. Let \(G \) be a graph of girth at least \(g \). If for every \(Z \subseteq V(G) \), the graph \(G[Z] \) contains an induced \((g - 3, k) \)-reducible subgraph with at most \(k \) vertices, then \(G \) with any assignment of lists of size at least \(k \) is weighted \(\varepsilon \)-flexible.

Reducible Configurations

Without 4-cycle

Discharging . . .

Triangle-free

Open Problems

Is there \(\varepsilon > 0 \) such that every planar graph

- with an assignment of lists of size 5 is (weighted) \(\varepsilon \)-flexible?
- of girth at least 5 and with an assignment of lists of size 3 is (weighted) \(\varepsilon \)-flexible?
- without 4-cycles and with an assignment of lists of size 4 is (weighted) \(\varepsilon \)-flexible?