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Fair Graph Problems Definition

Graph Problems

Graph Problems are usually tightly connected to a property π

Decision Graph Problem

Input G = (V ,E ) and a positive integer k .

Question Is there a set of vertices U ⊆ V of size at most k such that
U fulfills π in G?

Examples of π

U intersects every edge of G vertex cover

G \ U is a forest feedback vertex set

. . .
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Fair Graph Problems Definition

Fair Graph Problems

Graph Problems are usually tightly connected to a property π

Measuring locality of U in G = (V ,E )

We measure how many vertices of U are neighboring a vertex v

|N(v) ∩ U| .

Decision Fair Graph Problem

Input G = (V ,E ) and a positive integer k .

Question Is there a set of vertices U ⊆ V such that

U fulfills π in G and
|N(v) ∩ U| ≤ k for every vertex v ∈ V ? fairG (U) ≤ k
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Fair Graph Problems Results

Previous Results—Structural Parameters

Previous Results—graph models with fair objective

G ,U |= ϕ(U)

maxv∈V |N(v) ∩ U| ≤ k fairG (U) ≤ k

→ Fair-FO-Evaluation if ϕ is a first order formula

Theorem (Kolman, Lidický, & Sereni ’10)

Fair-MSO1-Evaluation is in XP parameterized by treewidth of G
and ‖ϕ‖, size of the formula ϕ.

Theorem (Masǎŕık & Toufar ’15)

Fair-MSO1-Evaluation is

in FPT parameterized by neighborhood diversity of G and ‖ϕ‖ and
W[1]-hard parameterized by treedepth and feedback vertex number
of G. ∃ϕhard
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Fair Graph Problems Results

Our Results

propose study of specific problems—Fair Vertex Cover

Theorem

Fair Vertex Cover is

in FPT parameterized by modular-width of G and

W[1]-hard parameterized by treedepth and feedback vertex number of G.

Theorem

Fair-MSO1-Evaluation is in FPT parameterized by twin-cover number
of G and ‖ϕ‖.

A set of vertices U is a twin-cover of G if each edge is

covered by U or

a twin edge.
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Bounded Twin-cover

Twin-cover and the Structure of a Graph

the cover set X

a collection of twin-cliques—disjoint cliques whose vertices have the
same closed neighborhood

u v w
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Bounded Twin-cover

Twin-cover and the Structure of a Graph

the cover set X

a collection of twin-cliques—disjoint cliques whose vertices have the
same closed neighborhood

u v w

C{u,v}

Observation

It suffices to measure the fair cost on twin-cover vertices C∅.

→ split G into CA for A ⊆ X

→ minimize independently |U ∩ CA| for A ⊆ X
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Bounded Twin-cover High-level Overview

High-level Overview of the Algorithm

Twin-cover and the Structure of a Graph

the cover set X

a collection of twin-cliques—disjoint cliques whose vertices have the
same closed neighborhood

1 Reducing the input graph
reduce G to G ′ such that G |= ϕ if and only if G ′ |= ϕ and |G ′| is
bounded by g(tc(G ), ‖ϕ‖)
from G ′ deduce possible solution shapes (of twin-cliques) in G for ϕ

2 Fair realization of a shape—find a vertex set U that

realizes the shape (obeys prescribed structural properties)
minimizes maxv∈V |N(v) ∩ U| suffices for v ∈ X
IP in fixed dimension with minimization of separable convex objective

3 Return the best realizer
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Bounded Twin-cover Shapes

Reducing the Input Graph

Lemma (Lampis ’12)

Let ϕ be an MSO1 formula and let G be a graph. If there is a set S of
more than f (‖ϕ‖) vertices having the same closed neighborhood, then for
any v ∈ S we have G |= ϕ if and only if G − v |= ϕ.

S S − vv
G

G − v
ϕ

Looks the same
to me . . .

Corollary (informal)

An MSO1 formula ϕ cannot “distinguish more than f (‖ϕ‖) vertices in
a twin-clique”.

→ directly allows to reduce size of twin-cliques
→ indirectly allows to reduce the number of twin-cliques

yields G ′
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Bounded Twin-cover Shapes

Shape

Corollary (informal)

An MSO1 formula ϕ cannot “distinguish more than f (‖ϕ‖) vertices in
a twin-clique”. in or out of U

Let CA be the collection of twin-cliques C such that N(v) ∩ X = A for a
vertex v ∈ C or each A ⊆ X .
Given x , y ∈ {0, 1, . . . , f (‖ϕ‖)} define

A-shape—SA(x , y)

Specifies the number of twin-cliques C ∈ CA with

(at least) x vertices in C ∩ U, f (‖ϕ‖) yields at least

(at least) y vertices in C \ U, and

size exactly/at least x + y .
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Bounded Twin-cover Shapes

A-Shape Realization Small Cliques

small cliques in terms of size |C | ≤ f (‖ϕ‖) no reduction of size done
some cliques (in CA with |C | = x + y) were possibly removed in G ′

the shape exactly determines both C ∩ U and C \ U (by x and y)
specifies (at least) how many cliques of such (x , y)-kind
choose greedily (x , y)-kind to fill up

Example: A = {u, v}
in total 11 cliques of size 3 whose neighborhood in C is exactly {u, v}

u v

(0, 3)

(0, 3) (1, 2) (2, 1) (3, 0)
2 2 1 1 realizable in G ′ (but not in G )
2 ≥ 3 1 ≥ 3 realizable in G (many different)
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Wrap-up Open Problems

Conclusions

Fair-MSO1-Evaluation is in FPT parameterized either by
neighborhood diversity or by twin-cover number:

Is Fair-MSO1-Evaluation in FPT parameterized by modular-width?
Is Anti-Fair-MSO1-Evaluation in FPT parameterized by
twin-cover number?
|N(v) ∩ U| ≤ k ∀v ∈ V → |N(v) ∩ U| ≥ k ∀v ∈ V
both simultaneously possible for neighborhood diversity (even `)
`-Fair-MSO1-Evaluation is in W[1]-hard for parameter ` even on
graphs of twin-cover number 1

Fair Vertex Cover is in FPT parameterized by modular width:
Is Fair Vertex Cover in FPT parameterized by the fair cost k?
Is there a polynomial kernel for Fair Vertex Cover, parameterized
by modular-width or the fair cost k?

study new specific problems—Fair Dominating Set, . . .

Thank you!
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