Parameterized Complexity of Fair Vertex Evaluation Problems

Dušan Knop, Tomáš Masařík, Tomáš Toufar

Algorithmics and Computational Complexity Group, TU Berlin

Graph Problems

Graph Problems are usually tightly connected to a property π

Decision Graph Problem Input G = (V, E) and a positive integer k. Question Is there a set of vertices $U \subseteq V$ of size at most k such that U fulfills π in G?

Examples of π

- U intersects every edge of G
- $G \setminus U$ is a forest

feedback vertex set

vertex cover

• . . .

Fair Graph Problems

Graph Problems are usually tightly connected to a property $\boldsymbol{\pi}$

Measuring locality of U in G = (V, E)

We measure how many vertices of U are neighboring a vertex v

 $|N(v) \cap U|$.

Decision Fair Graph Problem

Input G = (V, E) and a positive integer k.

Question Is there a set of vertices $U \subseteq V$ such that

- U fulfills π in G and
- $|N(v) \cap U| \le k$ for every vertex $v \in V$? fair_G(U) $\le k$

イロト イポト イヨト イヨト 二日

Fair Graph Problems

Graph Problems are usually tightly connected to a property $\boldsymbol{\pi}$

Measuring locality of U in G = (V, E)

We measure how many vertices of U are neighboring a vertex v

 $|N(v) \cap U|$.

Decision Fair Graph Problem

Input G = (V, E) and a positive integer k.

Question Is there a set of vertices $U \subseteq V$ such that

- U fulfills π in G and
- $|N(v) \cap U| \le k$ for every vertex $v \in V$? fair_G(U) \le k

< ロ ト < 同 ト < 三 ト < 三 ト

Dušan Knop, Tomáš Masařík, Tomáš Toufar

Fair Vertex Evaluation Problems

Fair Graph Problems

Graph Problems are usually tightly connected to a property $\boldsymbol{\pi}$

Measuring locality of U in G = (V, E)

We measure how many vertices of U are neighboring a vertex v

 $|N(v) \cap U|$.

Decision Fair Graph Problem

Input G = (V, E) and a positive integer k.

Question Is there a set of vertices $U \subseteq V$ such that

- U fulfills π in G and
- $|N(v) \cap U| \le k$ for every vertex $v \in V$? fair_G(U) \le k

イロト イヨト イヨト

Results

Previous Results—Structural Parameters

Previous Results—graph models with fair objective

•
$$G, U \models \varphi(U)$$

• $\max_{v \in V} |N(v) \cap U| \le k$

 $fair_G(U) \leq k$

 \rightarrow FAIR-FO-EVALUATION if φ is a first order formula

Theorem (Kolman, Lidický, & Sereni '10)

FAIR-MSO₁-EVALUATION is in XP parameterized by treewidth of G and $\|\varphi\|$, size of the formula φ .

Theorem (Masařík & Toufar '15)

FAIR-MSO₁-EVALUATION is

- in FPT parameterized by neighborhood diversity of G and $\|\varphi\|$ and
- W[1]-hard parameterized by treedepth and feedback vertex number of G. $\exists \varphi_{hard}$

Results

Our Results

• propose study of specific problems—FAIR VERTEX COVER

Theorem

FAIR VERTEX COVER is

- in FPT parameterized by modular-width of G and
- W[1]-hard parameterized by treedepth and feedback vertex number of G.

Results

Our Results

• propose study of specific problems—FAIR VERTEX COVER

Theorem

FAIR VERTEX COVER is

- in FPT parameterized by modular-width of G and
- W[1]-hard parameterized by treedepth and feedback vertex number of G.

Theorem

FAIR-MSO₁-EVALUATION is in FPT parameterized by twin-cover number of G and $\|\varphi\|$.

A set of vertices U is a twin-cover of G if each edge is

- covered by U or
- a twin edge.

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

Observation

It suffices to measure the fair cost on twin-cover vertices \mathcal{C}_{\emptyset} .

- ightarrow split G into \mathcal{C}_A for $A \subseteq X$
- \rightarrow minimize independently $|U \cap C_A|$ for $A \subseteq X$

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

Twin-cover and the Structure of a Graph

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

Reducing the input graph

- reduce G to G' such that $G \models \varphi$ if and only if $G' \models \varphi$ and |G'| is bounded by $g(tc(G), \|\varphi\|)$
- $\bullet\,$ from ${\it G}'$ deduce possible solution shapes (of twin-cliques) in ${\it G}$ for φ

Twin-cover and the Structure of a Graph

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

Reducing the input graph

- reduce G to G' such that $G \models \varphi$ if and only if $G' \models \varphi$ and |G'| is bounded by $g(tc(G), \|\varphi\|)$
- $\bullet\,$ from ${\it G}'$ deduce possible solution shapes (of twin-cliques) in ${\it G}$ for φ
- **②** Fair realization of a shape—find a vertex set U that
 - realizes the shape (obeys prescribed structural properties)
 - minimizes $\max_{v \in V} |N(v) \cap U|$ suffices for $v \in X$
 - IP in fixed dimension with minimization of separable convex objective

3

イロト 人間ト イヨト イヨト

Twin-cover and the Structure of a Graph

- the cover set X
- a collection of twin-cliques—disjoint cliques whose vertices have the same closed neighborhood

Reducing the input graph

- reduce G to G' such that $G \models \varphi$ if and only if $G' \models \varphi$ and |G'| is bounded by $g(tc(G), \|\varphi\|)$
- $\bullet\,$ from ${\it G}'$ deduce possible solution shapes (of twin-cliques) in ${\it G}$ for φ
- **②** Fair realization of a shape—find a vertex set U that
 - realizes the shape (obeys prescribed structural properties)
 - minimizes $\max_{v \in V} |N(v) \cap U|$ suffices for $v \in X$
 - IP in fixed dimension with minimization of separable convex objective

Return the best realizer

3

イロト 人間ト イヨト イヨト

Shapes

Reducing the Input Graph

Lemma (Lampis '12)

Let φ be an MSO₁ formula and let G be a graph. If there is a set S of more than $f(\|\varphi\|)$ vertices having the same closed neighborhood, then for any $v \in S$ we have $G \models \varphi$ if and only if $G - v \models \varphi$.

Corollary (informal)

An MSO₁ formula φ cannot "distinguish more than $f(\|\varphi\|)$ vertices in a twin-clique".

э

イロト イヨト イヨト

Shapes

Reducing the Input Graph

Lemma (Lampis '12)

Let φ be an MSO₁ formula and let G be a graph. If there is a set S of more than $f(\|\varphi\|)$ vertices having the same closed neighborhood, then for any $v \in S$ we have $G \models \varphi$ if and only if $G - v \models \varphi$.

Corollary (informal)

An MSO₁ formula φ cannot "distinguish more than $f(\|\varphi\|)$ vertices in a twin-clique".

- \rightarrow directly allows to reduce size of twin-cliques
- ightarrow indirectly allows to reduce the number of twin-cliques

yields G'

Shape

Corollary (informal)

An MSO_1 formula φ cannot "distinguish more than $f(\|\varphi\|)$ vertices in a twin-clique". in or out of U

Let C_A be the collection of twin-cliques C such that $N(v) \cap X = A$ for a vertex $v \in C$ or each $A \subseteq X$. Given $x, y \in \{0, 1, \dots, f(\|\varphi\|)\}$ define

A-shape— $\mathcal{S}_{\mathcal{A}}(x, y)$

Specifies the number of twin-cliques $C \in C_A$ with

- (at least) x vertices in $C \cap U$,
- (at least) y vertices in $C \setminus U$, and
- size exactly/at least x + y.

э

 $f(\|\varphi\|)$ yields at least

イロト イボト イヨト イヨト

Small Cliques

- small cliques in terms of size $|C| \le f(\|\varphi\|)$ no reduction of size done
- some cliques (in C_A with |C| = x + y) were possibly removed in G'
- the shape **exactly** determines both $C \cap U$ and $C \setminus U$ (by x and y)
- specifies (at least) how many cliques of such (x, y)-kind
- choose greedily (x, y)-kind to fill up

Example: $A = \{u, v\}$

• in total 11 cliques of size 3 whose neighborhood in C is exactly $\{u, v\}$

イロト イポト イヨト イヨト

Small Cliques

- small cliques in terms of size $|C| \leq f(\|\varphi\|)$ no reduction of size done
- some cliques (in C_A with |C| = x + y) were possibly removed in G'
- the shape **exactly** determines both $C \cap U$ and $C \setminus U$ (by x and y)
- specifies (at least) how many cliques of such (x, y)-kind
- choose greedily (x, y)-kind to fill up

Example: $A = \{u, v\}$

• in total 11 cliques of size 3 whose neighborhood in C is exactly $\{u, v\}$

Small Cliques

- small cliques in terms of size $|C| \leq f(\|\varphi\|)$ no reduction of size done
- some cliques (in C_A with |C| = x + y) were possibly removed in G'
- the shape **exactly** determines both $C \cap U$ and $C \setminus U$ (by x and y)
- specifies (at least) how many cliques of such (x, y)-kind
- choose greedily (x, y)-kind to fill up

Example: $A = \{u, v\}$

• in total 11 cliques of size 3 whose neighborhood in C is exactly $\{u, v\}$ (0,3) (0,3) (1,2) (1,2) (1,2) (2,1) (3,0) (3,0) (3,0) (3,0) (3,0)11 20 V (0,3) (1,2) (2,1)(3,0)2 1 1 2 realizable in G' (but not in G) > 3 1 > 3 realizable in G (many different) Dušan Knop, Tomáš Masařík, Tomáš Toufar Fair Vertex Evaluation Problems 10/11

Small Cliques

- small cliques in terms of size $|C| \leq f(\|\varphi\|)$ no reduction of size done
- some cliques (in C_A with |C| = x + y) were possibly removed in G'
- the shape **exactly** determines both $C \cap U$ and $C \setminus U$ (by x and y)
- specifies (at least) how many cliques of such (x, y)-kind
- choose greedily (x, y)-kind to fill up

Example: $A = \{u, v\}$

• in total 11 cliques of size 3 whose neighborhood in C is exactly $\{u, v\}$ (0,3) (0,3) (1,2) (1,2) (1,2) (2,1) (3,0) (3,0) (3,0) (1,2) (1,2)11 16 V (0,3) (1,2) (2,1)(3,0) $1 \quad 1$ 2 2 realizable in G' (but not in G) > 3 1 realizable in G (many different). > 3 Dušan Knop, Tomáš Masařík, Tomáš Toufar Fair Vertex Evaluation Problems 10/11

- $\bullet\ {\rm FAIR-MSO_1-EVALUATION}$ is in FPT parameterized either by neighborhood diversity or by twin-cover number:
 - Is $FAIR-MSO_1$ -EVALUATION in FPT parameterized by modular-width?
 - Is ANTI-FAIR-MSO₁-EVALUATION in FPT parameterized by twin-cover number?

 $|N(v) \cap U| \le k \quad \forall v \in V \quad \rightarrow \quad |N(v) \cap U| \ge k \quad \forall v \in V$

- both simultaneously possible for neighborhood diversity (even ℓ)
- $\ell\text{-}\mathrm{FAIR}\text{-}\mathrm{MSO}_1\text{-}\mathrm{EVALUATION}$ is in W[1]-hard for parameter ℓ even on graphs of twin-cover number 1

イロト イヨト イヨト -

- FAIR-MSO₁-EVALUATION is in FPT parameterized either by neighborhood diversity or by twin-cover number:
 - Is FAIR-MSO₁-EVALUATION in FPT parameterized by modular-width?
 - Is ANTI-FAIR-MSO₁-EVALUATION in FPT parameterized by twin-cover number?

 $|N(v) \cap U| \le k \qquad \forall v \in V \qquad
ightarrow \qquad |N(v) \cap U| \ge k \qquad \forall v \in V$

- both simultaneously possible for neighborhood diversity (even ℓ)
- ℓ -FAIR-MSO₁-EVALUATION is in W[1]-hard for parameter ℓ even on graphs of twin-cover number 1
- FAIR VERTEX COVER is in FPT parameterized by modular width:
 - Is FAIR VERTEX COVER in FPT parameterized by the fair cost k?
 - Is there a polynomial kernel for FAIR VERTEX COVER, parameterized by modular-width or the fair cost k?

ヘロト ヘ戸ト ヘヨト ヘヨト

- $\bullet\ {\rm FAIR-MSO_1-EVALUATION}$ is in FPT parameterized either by neighborhood diversity or by twin-cover number:
 - Is $FAIR-MSO_1$ -EVALUATION in FPT parameterized by modular-width?
 - Is ANTI-FAIR-MSO₁-EVALUATION in FPT parameterized by twin-cover number?

 $|N(v) \cap U| \le k \qquad \forall v \in V \qquad
ightarrow \qquad |N(v) \cap U| \ge k \qquad \forall v \in V$

- both simultaneously possible for neighborhood diversity (even ℓ)
- $\ell\text{-}\mathrm{FAIR}\text{-}\mathrm{MSO}_1\text{-}\mathrm{EVALUATION}$ is in W[1]-hard for parameter ℓ even on graphs of twin-cover number 1
- FAIR VERTEX COVER is in FPT parameterized by modular width:
 - Is FAIR VERTEX COVER in FPT parameterized by the fair cost k?
 - Is there a polynomial kernel for FAIR VERTEX COVER, parameterized by modular-width or the fair cost k?
- study new specific problems—FAIR DOMINATING SET, ...

3

ヘロト 不得 ト イヨト イヨト

- $\bullet\ {\rm FAIR-MSO_1-EVALUATION}$ is in FPT parameterized either by neighborhood diversity or by twin-cover number:
 - Is $FAIR-MSO_1$ -EVALUATION in FPT parameterized by modular-width?
 - Is ANTI-FAIR-MSO₁-EVALUATION in FPT parameterized by twin-cover number?

 $|N(v) \cap U| \le k \qquad \forall v \in V \qquad
ightarrow \qquad |N(v) \cap U| \ge k \qquad \forall v \in V$

- both simultaneously possible for neighborhood diversity (even ℓ)
- $\ell\text{-}\mathrm{FAIR}\text{-}\mathrm{MSO}_1\text{-}\mathrm{EVALUATION}$ is in W[1]-hard for parameter ℓ even on graphs of twin-cover number 1
- FAIR VERTEX COVER is in FPT parameterized by modular width:
 - Is FAIR VERTEX COVER in FPT parameterized by the fair cost k?
 - Is there a polynomial kernel for FAIR VERTEX COVER, parameterized by modular-width or the fair cost k?
- \bullet study new specific problems—FAIR Dominating Set, \ldots

Thank you!

・ロト ・四ト ・ヨト ・ヨトー