Constant Congestion Brambles in Directed Graphs

Tomáš Masařík, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge

Simon Fraser University, BC, Canada & University of Warsaw, Poland

EUROCOMB 2021

Theorem (**Undirected** grid by Robertson & Seymour '86)

For every $k \ge 1$ there exists t = f(k) such that every graph of treewidth at least t contains a $k \times k$ grid as a minor.

Theorem (**Undirected** grid by Chuzhoy & Tan '21)

For every $k \ge 1$ there exists $t = O(k^9 \operatorname{polylog}(k))$ such that every graph of treewidth at least t contains a $k \times k$ grid as a minor.

Theorem (**Directed** grid Kawarabayashi & Kreutzer '15)

For every $k \ge 1$ there exists t = f(k) such that every directed graph of directed treewidth at least t contains a $k \times k$ directed grid as a minor.

"Relaxed Grid" — Bramble

Definition

Definition $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ A directed bramble is a family of strongly connected subgraphs s.t.:

- every two subgraphs either intersect in a vertex, or
- the graph contains an arc from one to the other and an arc back.
- Order: min size of a vertex set. that intersects every element of a bramble.
- Size: the number of its elements.
- Congestion: max number of elements that contain a single vertex. For any bramble:

size \leq order \cdot congestion.

"Relaxed Grid" — Bramble

Definition

A directed bramble is a family of strongly connected subgraphs s.t.:

- every two subgraphs either intersect in a vertex, or
- the graph contains an arc from one to the other and an arc back.

Theorem (MPRzS '21)

For every $k \ge 1$ there exists $t = O(k^{48} \log^{13} k)$ such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

Brambles — Undirected Graphs

For any bramble: size \leq order \cdot congestion.

 $k \times k$ grid contains a bramble of order k and size k^2 , but congestion 2k - 1.

 $k \times k$ grid contains a bramble of congetion 2, order $\lfloor k/2 \rfloor$ and size k.

Theorem (Seymour, Thomas '93)

Max order of a bramble is **exactly** its treewidth + 1.

Theorem (Grohe, Marx '09 and Hatzel, Komosa, Pilipczuk, Sorge '20)

There are classes of graphs where for each $0 < \delta < 1/2$ any bramble of order $\tilde{\Omega}(k^{(0.5+\delta)})$ requires exponential size in $k^{2\delta}$.

For any bramble: size \leq order \cdot congestion.

Theorem (Reed '99)

Max order of a bramble is up to constant factor its treewidth.

Theorem (Grohe, Marx '09)

There are classes of graphs where for each $0 < \delta < 1/2$ any bramble of order $\tilde{\Omega}(k^{(0.5+\delta)})$ requires exponential size in $k^{2\delta}$.

For any bramble: size \leq order \cdot congestion.

Theorem (MPRzS '21)

For every $k \ge 1$ there exists $t = O(k^{48} \log^{13} k)$ such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

Theorem (MPRzS '21)

For every $k \ge 1$ there exists $t = O(k^{48} \log^{13} k)$ such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

Directed grid give congestion 2 bramble of linear size.

Hence,

- Kawarabayashi and Kreutzer '15 gives congestion 2 but small-sized bramble.
- Half-integral grid (Kawarabayashi, Kobayashi, Kreutzer '14) gives congestion 4 but small-sized bramble.
- Planar graphs grid (Hatzel, Kawarabayashi, Kreutzer '19) gives congestion 2 polynomial bound on a bramble.

Lemma (Dense winning scenario)

Let c_{KT} be the constant from Kostochka '84. If a graph G contains a family \mathcal{W} of closed walks of congestion α , whose intersection graph is not $c_{KT} \cdot d \cdot \sqrt{\log d}$ -degenerate, then G contains a bramble of congestion α and size d.

Proof — Extracting a bramble (Dense case)

Lemma (Dense winning scenario)

Let c_{KT} be the constant from Kostochka '84. If a graph G contains a family W of closed walks of congestion α , whose intersection graph is not $c_{KT} \cdot d \cdot \sqrt{\log d}$ -degenerate, then G contains a bramble of congestion α and size d.

Proof — Starting Point

Definition (Path system)

Let $a, b \in \mathbb{N}$. An (a, b)-path system $(P_i, A_i, B_i)_{i=1}^a$ consists of

- vertex-disjoint paths P_1, P_2, \ldots, P_a , and
- for every $i \in [a]$, two sets $A_i, B_i \subseteq V(P_i)$, each of size b, such that every vertex of B_i appears on P_i later than all vertices of A_i ,

such that $\bigcup_{i=1}^{a} A_i \cup B_i$ is well-linked in G.

