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Tuza's conjecture

(1981) In a graph without & edge-disjoint triangles, it suffices to delete at
most 2k edges to obtain a triangle-free graph.

for any graph G: T(G) S 2/,L<G>

Definitions
° . a family of pairwise edge-disjoint triangles
1(G) = the maximum size of a triangle packing in graph G.
° . a subset of edges intersecting all triangles
7(G) := the minimum size of a triangle hitting in graph G.

Easy: 7(G) < 3u(G) True
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What Is Known
7(G) < 2u(G)

e if true, tight for Ky, K5 larger cliques: ~ 1.5
® confirmed in some graph classes:

® planar graphs, [Tuza '90]
® cliques, [Feder, Subi '12]
® graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
® 4-colorable graphs, [Aparna Lakshmanan, Bujtés, Tuza '11]
® graphs with maximum average degree < 7, [Puleo '15]
[ ]

Bonamy, Bozyk, Grzesik, Hatzel, Masatik, Novotn4, Okrasa Tuza's Conjecture for Threshold Graphs 3/10



What Is Known
7(G) < 2u(G)

e if true, tight for Ky, K5 larger cliques: ~ 1.5
® confirmed in some graph classes:

® planar graphs, [Tuza
® cliques, [Feder, Subi
® graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez
® 4-colorable graphs, [Aparna Lakshmanan, Bujtés, Tuza
® graphs with maximum average degree < 7, [Puleo
[ )

* 7(G) < 2u(G) + o(|]V(G)|?) for any graph G [Haxell, RadI
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* 7(G) < 2u(G) + o(|]V(G)|?) for any graph G [Haxell, RadI

— asymptotically true when 7(G) is quadratic in |[V(G)|.
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— asymptotically true when 7(G) is quadratic in |[V(G)|.
® The best in general 7(G) < 2.87u(G) [Haxell '99]
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Our Results: Threshold Graphs

- interesting herediary classes & superclasses of cliques:
split graphs N cographs
threshold graphs
G=(V,E)isa if its vertices can be partitioned into a
clique K = {c1,...,ct} and an independent set S = {uy,...,us}:
L4 N[C/L'Jrl] - N[Cz] forall 1 <i < k and
L4 N(Ul) C N(Ui+1) forall1 <i<s.
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Our Results: Threshold Graphs

- interesting herediary classes & superclasses of cliques:

split graphs N cographs

threshold graphs

G=(V,E)isa if its vertices can be partitioned into a
clique K = {ci,...,c} and an independent set S = {uy,...,us}:

® Nlciy1] € Ng] for all 1 <i < k and

® N(u;) € N(ujqq1) forall 1 <i <s.

Our result G threshold graph: 7(G) < 2u(G)

Bonamy, Bozyk, Grzesik, Hatzel, Masatik, Novotn4, Okrasa Tuza's Conjecture for Threshold Graphs 4/10



Tools

K clique, S independent set such that they have all the edges in between
@ If |S| < |K|, then we can find a triangle packing of size S| - [ $|K|].
@® If |S| > | K], then we can find a triangle packing of size (|2|).
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For every threshold graph G = (V,E) there exists a threshold
representation (K,S) with a vertex v € K, N(v) NS = 0.



Proof Sketch: Initial Settings
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For every threshold graph G = (V,E) there exists a threshold
representation (K,S) with a vertex v € K, N(v) NS = 0.

(K,S) := a threshold representation of G, 3v e K, N(v)NS =10
k:=|K| s:=]|S|
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Proof Sketch: Case k odd and |X| < &
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Proof Sketch: Case k odd and |X| < %
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Thank you for your attention.



