### Tuza's Conjecture for Threshold Graphs

Marthe Bonamy, Łukasz Bożyk, Andrzej Grzesik, Meike Hatzel, Tomáš Masařík, **Jana Novotná**, Karolina Okrasa

University of Warsaw, Poland

### EUROCOMB September 6, 2021















(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

#### **Definitions**

• triangle packing: a family of pairwise edge-disjoint triangles

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

#### **Definitions**

• triangle packing: a family of pairwise edge-disjoint triangles  $\mu(G):=$  the maximum size of a triangle packing in graph G.

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

- triangle packing: a family of pairwise edge-disjoint triangles  $\mu(G):=$  the maximum size of a triangle packing in graph G.
- triangle hitting: a subset of edges intersecting all triangles

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

- ullet triangle packing: a family of pairwise edge-disjoint triangles  $\mu(G):=$  the maximum size of a triangle packing in graph G.
- ullet triangle hitting: a subset of edges intersecting all triangles au(G):= the minimum size of a triangle hitting in graph G.

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

for any graph 
$$G$$
:  $au(G) \leq 2\mu(G)$  Conjecture

- ullet triangle packing: a family of pairwise edge-disjoint triangles  $\mu(G):=$  the maximum size of a triangle packing in graph G.
- ullet triangle hitting: a subset of edges intersecting all triangles au(G):= the minimum size of a triangle hitting in graph G.

(1981) In a graph without k edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph.

for any graph 
$$_{G:}$$
  $au(G) \leq 2\mu(G)$ 

Conjecture

- ullet triangle packing: a family of pairwise edge-disjoint triangles  $\mu(G):=$  the maximum size of a triangle packing in graph G.
- ullet triangle hitting: a subset of edges intersecting all triangles au(G):= the minimum size of a triangle hitting in graph G.

Easy: 
$$\tau(G) \leq 3\mu(G)$$
 True

$$\tau(G) \leq 2\mu(G)$$
 Conjecture

$$\tau(G) \le 2\mu(G)$$

Conjecture

• if true, tight for  $K_4$ ,  $K_5$ 

$$\tau(G) \le 2\mu(G)$$

Conjecture

• if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$ 

$$\tau(G) \le 2\mu(G)$$

Conjecture

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7, [Puleo '15]
  - . . .

$$\tau(G) \le 2\mu(G)$$

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7,</li> [Puleo '15]
  - . . .
- $\tau(G) \leq 2\mu(G) + o(|V(G)|^2)$  for any graph G [Haxell, Rödl '01]

$$\tau(G) \le 2\mu(G)$$

### Conjecture

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7, [Puleo '15]
  - ...
- $\tau(G) \leq 2\mu(G) + o(|V(G)|^2)$  for any graph G [Haxell, Rödl '01]  $\to$  asymptotically true when  $\tau(G)$  is quadratic in |V(G)|.

$$\tau(G) \le 2\mu(G)$$

### Conjecture

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7, [Puleo '15]
  - ...
- $\tau(G) \leq 2\mu(G) + o(|V(G)|^2)$  for any graph G [Haxell, Rödl '01]  $\to$  asymptotically true when  $\tau(G)$  is quadratic in |V(G)|.
- The best in general  $\tau(G) \leq 2.87 \mu(G)$  [Haxell '99]

$$\tau(G) \le 2\mu(G)$$

Conjecture

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7, [Puleo '15]
  - ...
- $\tau(G) \leq 2\mu(G) + o(|V(G)|^2)$  for any graph G [Haxell, Rödl '01]  $\to$  asymptotically true when  $\tau(G)$  is quadratic in |V(G)|.
- The best in general  $\tau(G) \leq 2.87 \mu(G)$  [Haxell '99]

### Only confirmed for a few hereditary classes.

$$\tau(G) \le 2\mu(G)$$

Conjecture

- if true, tight for  $K_4$ ,  $K_5$  larger cliques:  $\approx 1.5$
- confirmed in some graph classes:
  - planar graphs, [Tuza '90]
  - cliques, [Feder, Subi '12]
  - graphs of treewidth at most 6, [Botler, Fernandes, and Gutiérrez '21]
  - 4-colorable graphs, [Aparna Lakshmanan, Bujtás, Tuza '11]
  - graphs with maximum average degree < 7, [Puleo '15]
  - ...
- $\tau(G) \leq 2\mu(G) + o(|V(G)|^2)$  for any graph G [Haxell, Rödl '01]  $\to$  asymptotically true when  $\tau(G)$  is quadratic in |V(G)|.
- The best in general  $\tau(G) \leq 2.87 \mu(G)$  [Haxell '99]

#### Confirmed in no superclass of cliques.

- interesting herediary classes & superclasses of cliques:

- interesting herediary classes & superclasses of cliques:
  - split graphs

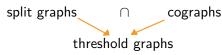
- interesting herediary classes & superclasses of cliques:
  - split graphs

cographs

- interesting herediary classes & superclasses of cliques:

split graphs \( \cap \) cographs threshold graphs

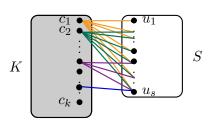
- interesting herediary classes & superclasses of cliques:



G=(V,E) is a **threshold graph** if its vertices can be partitioned into a clique  $K=\{c_1,\ldots,c_k\}$  and an independent set  $S=\{u_1,\ldots,u_s\}$ :

- $N[c_{i+1}] \subseteq N[c_i]$  for all  $1 \le i < k$  and
- $N(u_i) \subseteq N(u_{i+1})$  for all  $1 \le i < s$ .

nested neighborhood



- interesting herediary classes & superclasses of cliques:

split graphs 
$$\cap$$
 cographs threshold graphs

G = (V,E) is a **threshold graph** if its vertices can be partitioned into a clique  $K = \{c_1, \ldots, c_k\}$  and an independent set  $S = \{u_1, \ldots, u_s\}$ :

- $N[c_{i+1}] \subseteq N[c_i]$  for all  $1 \le i < k$  and
- $N(u_i) \subseteq N(u_{i+1})$  for all  $1 \le i < s$ .

nested neighborhood

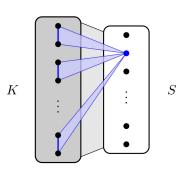
Our result

G threshold graph:  $\tau(G) \leq 2\mu(G)$ 

#### **Tools**

K clique, S independent set such that they have all the edges in between

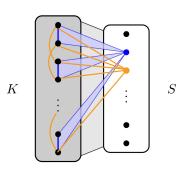
- $\textbf{1} \ \, \text{If} \, \, |S|<|K|, \, \text{then we can find a triangle packing of size} \, \, |S|\cdot \lfloor \tfrac{1}{2}|K| \rfloor.$
- 2 If  $|S| \ge |K|$ , then we can find a triangle packing of size  $\binom{|K|}{2}$ .



#### **Tools**

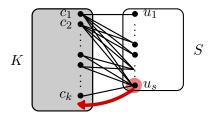
K clique, S independent set such that they have all the edges in between

- 1 If |S|<|K|, then we can find a triangle packing of size  $|S|\cdot\lfloor\frac{1}{2}|K|\rfloor$ .
- 2 If  $|S| \ge |K|$ , then we can find a triangle packing of size  $\binom{|K|}{2}$ .



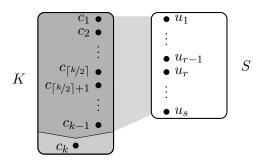
For every threshold graph G=(V,E) there exists a threshold representation (K,S) with a vertex  $v\in K$ ,  $N(v)\cap S=\emptyset$ .

For every threshold graph G=(V,E) there exists a threshold representation (K,S) with a vertex  $v\in K$ ,  $N(v)\cap S=\emptyset$ .



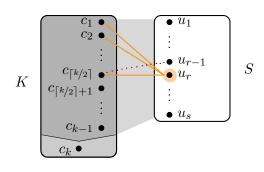
For every threshold graph G=(V,E) there exists a threshold representation (K,S) with a vertex  $v\in K,\ N(v)\cap S=\emptyset.$ 

$$(K,\!S):=$$
 a threshold representation of  $G,$   $\exists$   $v\in K,$   $N(v)\cap S=\emptyset$  
$$k:=|K| \qquad s:=|S|$$



For every threshold graph G=(V,E) there exists a threshold representation (K,S) with a vertex  $v\in K$ ,  $N(v)\cap S=\emptyset$ .

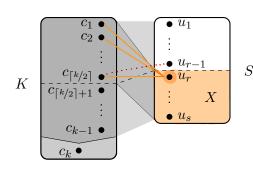
$$(K,\!S):=$$
 a threshold representation of  $G$ ,  $\exists~v\in K,~N(v)\cap S=\emptyset$  
$$k:=|K|~~s:=|S|$$



$$r:= \underline{\mathsf{minimal}} \ \mathsf{such} \ \mathsf{that} \ \{c_1, \dots, c_{\lceil k/2 \rceil}\} \subseteq N(u_r)$$

For every threshold graph G=(V,E) there exists a threshold representation (K,S) with a vertex  $v\in K$ ,  $N(v)\cap S=\emptyset$ .

$$(K,\!S):=$$
 a threshold representation of  $G,$   $\exists$   $v\in K,$   $N(v)\cap S=\emptyset$  
$$k:=|K| \qquad s:=|S|$$



$$r:=$$
 minimal such that  $\{c_1,\ldots,c_{\lceil k/2 \rceil}\}\subseteq N(u_r)$ 

$$S \qquad X := \{u_r, \dots, u_s\}$$

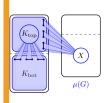
### **Proof Sketch: Cases**

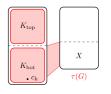
$$|X| \ge k/2$$







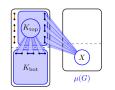


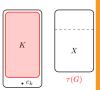


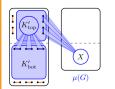
$$|X| \ge k+1/2$$

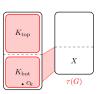


$$|X| < k+1/2$$





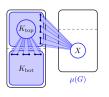


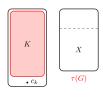


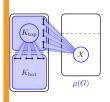
### **Proof Sketch: Cases**

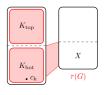
$$|X| \ge k/2$$







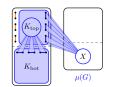


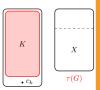


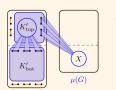
$$|X| \ge k+1/2$$



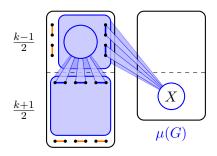
$$|X| < k+1/2$$

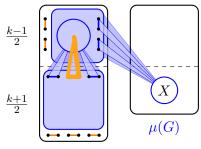




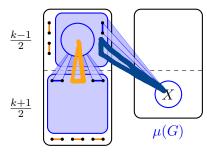




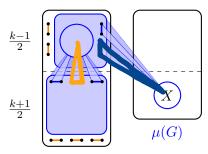




$$\bullet \ \lfloor \tfrac{(k+1)/2}{2} \rfloor \cdot \tfrac{k-1}{2}$$

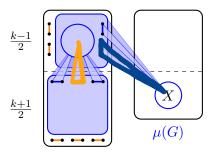


- $\bullet \ \lfloor \tfrac{(k+1)/2}{2} \rfloor \cdot \tfrac{k-1}{2}$
- $\bullet \min\{|X|\cdot \lfloor \tfrac{k-1}{4}\rfloor, {(k-1)/2 \choose 2}\}$



$$\bullet \lfloor \tfrac{(k+1)/2}{2} \rfloor \cdot \tfrac{k-1}{2} \geq \tfrac{k-1}{4} \cdot \tfrac{k-1}{2}$$

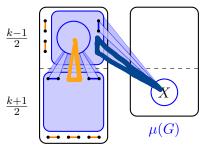
$$\begin{aligned} & \min\{|X|\cdot \lfloor \frac{k-1}{4}\rfloor, {\binom{(k-1)/2}{2}}\} \\ & \geq |X| \frac{k-3}{4} \end{aligned}$$



$${\color{red}\bullet} \; \lfloor \tfrac{(k+1)/2}{2} \rfloor \cdot \tfrac{k-1}{2} \geq \tfrac{k-1}{4} \cdot \tfrac{k-1}{2}$$

$$\begin{aligned} & \min\{|X|\cdot \lfloor \frac{k-1}{4}\rfloor, {\binom{(k-1)/2}{2}}\} \\ & \geq |X| \frac{k-3}{4} \end{aligned}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$



$$\frac{k+1}{2}$$

$$\frac{k-1}{2}$$

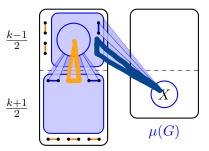
$$\cdot c_k$$

$$\tau(G)$$

$${\color{red}\bullet} \; \lfloor \tfrac{(k+1)/2}{2} \rfloor \cdot \tfrac{k-1}{2} \geq \tfrac{k-1}{4} \cdot \tfrac{k-1}{2}$$

$$\begin{aligned} & \bullet \min\{|X| \cdot \lfloor \frac{k-1}{4} \rfloor, \binom{(k-1)/2}{2} \} \\ & \geq |X| \frac{k-3}{4} \end{aligned}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$



$$\frac{k+1}{2}$$
 $\frac{k-1}{2}$ 
 $X$ 
 $\tau(G)$ 

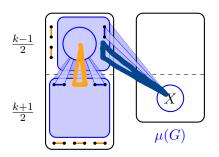
$${\color{red}\bullet} \; \lfloor \frac{^{(k+1)/2}}{2} \rfloor \cdot \frac{k-1}{2} \geq \frac{k-1}{4} \cdot \frac{k-1}{2}$$

$$\begin{aligned} & \bullet \min\{|X| \cdot \lfloor \frac{k-1}{4} \rfloor, {\binom{(k-1)/2}{2}}\} \\ & \geq |X|^{\frac{k-3}{4}} \end{aligned}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$

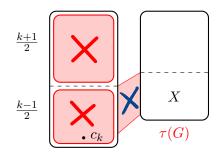
$$\frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$

 $\binom{(k+1)/2}{2} + \binom{(k-1)/2}{2}$ 

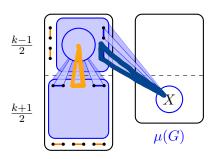


$$\begin{aligned} & \bullet \min\{|X| \cdot \lfloor \frac{k-1}{4} \rfloor, \binom{(k-1)/2}{2} \} \\ & \geq |X| \frac{k-3}{4} \end{aligned}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$

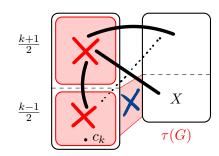


- $\bullet \binom{(k+1)/2}{2} + \binom{(k-1)/2}{2}$
- $\bullet |X|^{\frac{k-3}{2}}$



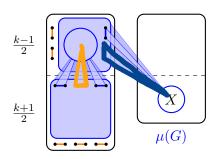
$$\begin{aligned} & \min\{|X|\cdot \lfloor \frac{k-1}{4}\rfloor, {k-1\choose 2} \} \\ & \geq |X| \frac{k-3}{4} \end{aligned}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$



- $\bullet \binom{(k+1)/2}{2} + \binom{(k-1)/2}{2}$
- $\bullet$   $|X| \frac{k-3}{2}$

$$\binom{(k+1)/2}{2} + \binom{(k-1)/2}{2} + |X| \frac{k-3}{2} \ge \tau(G)$$



$$\lfloor \frac{(k+1)/2}{2} \rfloor \cdot \frac{k-1}{2} \ge \frac{k-1}{4} \cdot \frac{k-1}{2}$$

$$\begin{array}{l}
\bullet \min\{|X| \cdot \lfloor \frac{k-1}{4} \rfloor, \binom{(k-1)/2}{2}\} \\
\geq |X| \frac{k-3}{4}
\end{array}$$

$$\frac{k+1}{2}$$

$$\frac{k-1}{2}$$

$$c_k$$

$$\tau(G)$$

$$\bullet \binom{(k+1)/2}{2} + \binom{(k-1)/2}{2}$$

$$\bullet |X|^{\frac{k-3}{2}}$$

$$\mu(G) \ge \frac{k-1}{2} \cdot \frac{k-1}{4} + |X| \frac{k-3}{4}$$

$$\binom{(k+1)/2}{2} + \binom{(k-1)/2}{2} + |X| \frac{k-3}{2} \ge \tau(G)$$

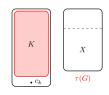
$$2\mu(G) \geq \tau(G)$$

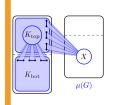
### **Proof Sketch: Cases**

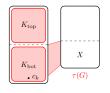
$$|X| \ge k/2$$

## k even



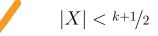


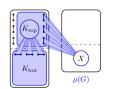




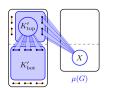
$$|X| \ge k+1/2$$

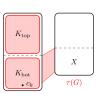












#### Conclusion

• co-chain graphs

#### Conclusion

- co-chain graphs
- interval graphs
- cographs
- split graphs

#### Conclusion

- co-chain graphs
- interval graphs
- cographs
- split graphs

Thank you for your attention.