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Well-established Definitions

List coloring
• A list assignment L for a graph: a function that to each vertex

assigns a set of available colors.

• An L-coloring Ï of a graph: proper coloring that to each vertex v
assigns a color in L(v).

Choosability
A graph is k-choosable if for every list assignment L of size at least k
there exist an L-coloring.

Precoloring Extension
The precoloring extension: Is it possible to extend a proper coloring of

a subset of vertices into the whole graph?
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Flexibility

Request
A request on a graph with a list assignment L: a function r that assigns

to some vertices a color in L(v).

Á-satisfiable request
For Á > 0, a request r is Á-satisfiable if there exists an L-coloring „ of G
such that „(v) = r(v) for at least Á|dom(r)| vertices v œ dom(r).

Á-flexibily k-choosability
We say that graph G is Á-flexibily k-choosable if for any list assignment

of size at least k, every request is Á-satisfiable.
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Lists are necessary!

Any k-colorable graph with any precoloring of size k is
1
k -flexible.

1
k fraction of the request is preserved.
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Planar Graphs

• 76’ Appel, Haken: 4 colorable

• 94’ Thomassen: 5-choosable

• 19’ Dvořák, Norin, Postle: Á-flexibly 6-choosable

• 19’ Dvořák, Norin, Postle: weighted Á-flexibly 7-choosable
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Planar Graphs

• 76’ Appel, Haken: 4 colorable

• 94’ Thomassen: 5-choosable

• 19’ Dvořák, Norin, Postle: Á-flexibly 6-choosable

• 19’ Dvořák, Norin, Postle: weighted Á-flexibly 7-choosable

• 20’ Dvořák, TM, Musílek, Pangrác: Planar triangle-free wFl 4-Ch

• 20’ Dvořák, TM, Musílek, Pangrác: Planar girth 6 wFl 3-Ch

• 19’ TM: Planar C4-free wFl 5-Ch

• 20+’ Choi, Clemen, Ferrara, Horn, Ma, TM: Planar . . . -free

wFl 5-Ch or wFl 4-Ch

• 20+’ Yang, Yang: Planar (C4, C5)-free wFl 4-Ch

• 20+’ Lidický, TM, Murphy, Zerbib: Planar (K4, C5, C6, C7, B5)-free
wFl 4-Ch
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Degeneracy

Definition (degeneracy)
A graph G is d-degenerate if there is a vertex of degree d in every

subgraph of G.

Graphs of degeneracy d

Greedy algorithm gives (d + 1)-choosability.

Dvořák, Norin, Postle Á-flexibly (d + 2)-choosability.
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Degeneracy

Definition (degeneracy)
A graph G is d-degenerate if there is a vertex of degree d in every

subgraph of G.

Graphs of degeneracy d

Greedy algorithm gives (d + 1)-choosability.

Dvořák, Norin, Postle Á-flexibly (d + 2)-choosability.

Conjecture (Dvořák, Norin, Postle)
Is it possible to get Á-flexibly (d + 1)-choosability?

At least for non-regular graphs of max degree d + 1?
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Degeneracy

Conjecture (Dvořák, Norin, Postle)
Is it possible to get Á-flexibly (d + 1)-choosability?

Challenging even for d = 2.

• 20’ Dvořák, TM, Musílek, Pangrác: Planar triangle-free wFl 4-Ch

• 20’ Dvořák, TM, Musílek, Pangrác: Planar girth 6 wFl 3-Ch

• 19’ TM: Planar C4-free wFl 5-Ch

• 20+’ Choi, Clemen, Ferrara, Horn, Ma, TM: Planar . . . -free

wFl 5-Ch or wFl 4-Ch

• 20+’ Yang, Yang: Planar (C4, C5)-free wFl 4-Ch

• 20+’ Lidický, TM, Murphy, Zerbib: Planar (K4, C5, C6, C7, B5)-free
wFl 4-Ch
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Our Results

Conjecture (Dvořák, Norin, Postle)
Is it possible to get Á-flexibly d + 1-choosability? ???

At least for non-regular graphs of max degree �? YES!

Theorem (20’ BMS)
Graph G of max degree � is

1
6� -flexibly �-choosable, unless it is K�+1.

Theorem (20’ BMS)
graphs of treewidth 2 (2-trees) are

1
3 -flexibly 3-choosable.

Answering question of Choi, Clemen, Ferrara, Horn, Ma, TM for outerplanar

Theorem (20’ BMS)
graphs of treedepth k are

1
k -flexibly k-choosable.
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2-trees

Theorem (20’ BMS)
2-trees are

1
3 -flexibly 3-choosable.

Algorithmic: we will construct 6-colorings:

The properties of the constructed colorings
• each color appears exactly twice at each vertex.

• each pair of colors is unique.

Bradshaw, TM, Stacho Flexibility with Degeneracy Conditions 9 / 14

1-trees are F- Flex. 2-ch
-

$s•*•µi§

u w w

Example:

u{•"•{43,4}
" ① "

2. 1 4

i. 0:386µW We 4 . 2 4I.E
6. 3 2



2-trees

The properties of the constructed colorings
• each color appears exactly twice at each vertex.

• each pair of colors is unique.
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�-regular graphs

Theorem
BMS Graph G of max degree � Ø 3 is

1
6� -flexibly �-choosable, unless

it is K�+1
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�-regular graphs

Theorem
BMS Graph G of max degree � Ø 3 is

1
2�3 -flexibly �-choosable, unless

it is K�+1

Even cycle is not flexibly 2-choosable!

2, 31, 2

· · ·

1, 21, 2

1, 3

1, 2

1, 2

1, 2
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Block-cut tree and ERT theorem

Definition
A block is a maximal 2-connected subgraph.

Theorem (79’ Erdős, Rubin, Taylor)
G is not degree-choosable if and only if every block of G is either a

clique or an odd cycle.
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Proof: �-regular graphs

• Goal: create RÕ ™ R such that |RÕ| Ø Á|R| are the satisfied requests.

• Prone RÕ
to be at distance Ø 4 (keeps at least

1
�3 ).

• Try to list color G \ RÕ
with modified lists.

• As |L(v)| Ø degG\RÕ(v) use ERT characterization of

degree-choosability.
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Proof: �-regular graphs

• Goal: create RÕ ™ R such that |RÕ| Ø Á|R| are the satisfied requests.

• Prone RÕ
to be at distance Ø 4 (keeps at least

1
�3 ).

• Try to list color G \ RÕ
with modified lists.

• As |L(v)| Ø degG\RÕ(v) use ERT characterization of

degree-choosability.

If all components of G \ RÕ
are degree-choosable we are done!
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What if some components of G \ RÕ
are not deg.-choosable

• If a bad component of G \ RÕ
cannot be list-colored by ERT, its

terminal blocks must be K� or odd cycle.

• Every bad component has Ø 2 neighbors in R.

• Solution: Ignore preferences at Æ 1
2 |R| vertices to eliminate bad

components.
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Open Directions

Are k-trees flexibly (k + 1)-choosable? Even k-path is open, even for

k = 4.
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Open Directions

Are k-trees flexibly (k + 1)-choosable? Even k-path is open, even for

k = 4.

Which graphs are flexibly degree-choosable? e.g.: Diamond is not

1, 2 1, 2, 3

1, 2, 3 1, 3
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Open Directions

Are k-trees flexibly (k + 1)-choosable? Even k-path is open, even for

k = 4.

Which graphs are flexibly degree-choosable? e.g.: Diamond is not

Thank you for your attention!
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