Flexible List Colorings in Graphs with Special Degeneracy Conditions

Peter Bradshaw, Tomáš Masařík, Ladislav Stacho

Simon Fraser University, Burnaby, Canada

Algorithms seminar University of Warsaw Warszawa (online), Poland

1/14

Well-established Definitions

List coloring

- A list assignment L for a graph: a function that to each vertex assigns a set of available colors.
- An *L*-coloring φ of a graph: proper coloring that to each vertex v assigns a color in L(v).

Choosability

A graph is k-choosable if for every list assignment L of size at least k there exist an L-coloring.

Precoloring Extension

The precoloring extension: Is it possible to extend a proper coloring of a subset of vertices into the whole graph?

List assignment OFsize 3

Flexibility

Request

A request on a graph with a list assignment L: a function r that assigns to some vertices a color in L(v).

ε -satisfiable request

For $\varepsilon > 0$, a request r is ε -satisfiable if there exists an L-coloring ϕ of G such that $\phi(v) = r(v)$ for at least $\varepsilon |\operatorname{dom}(r)|$ vertices $v \in \operatorname{dom}(r)$.

ε -flexibily k-choosability

We say that graph G is ε -flexibily k-choosable if for any list assignment of size at least k, every request is ε -satisfiable.

Lists are necessary!

Any k-colorable graph with any precoloring of size k is $\frac{1}{k}$ -flexibly k-ch

Planar Graphs

- 76' Appel, Haken: 4-colorable
- 94' Thomassen: 5-choosable
- 19' Dvořák, Norin, Postle: ε -flexibly 6-choosable
- 19' Dvořák, Norin, Postle: weighted $\varepsilon\text{-flexibly 7-choosable}$

Planar Graphs

- 76' Appel, Haken: 4 colorable
- 94' Thomassen: 5-choosable
- 19' Dvořák, Norin, Postle: ε -flexibly 6-choosable
- 19' Dvořák, Norin, Postle: weighted ε -flexibly 7-choosable
- wFl 4-Ch • 20' Dvořák, TM, Musílek, Pangrác: Planar triangle-free
- 20' Dvořák, TM, Musílek, Pangrác: Planar girth 6 wFl 3-Ch wFl 5-Ch
- 19' TM: Planar C4-free
- 20+' Choi, Clemen, Ferrara, Horn, Ma, TM: Planar ...-free wFl 5-Ch or wFl 4-Ch
- 20+' Yang, Yang: Planar (C_4, C_5) -free
- 20+' Lidický, TM, Murphy, Zerbib: Planar $(K_4, C_5, C_6, C_7, B_5)$ -free \mathcal{W} Fl 4-Ch

wFl 4-Ch

Degeneracy

Definition (degeneracy)

A graph G is *d*-degenerate if there is a vertex of degree d in every subgraph of G.

degeneracy order

Graphs of degeneracy d

Greedy algorithm gives (d + 1)-choosability. Dvořák, Norin, Postle ε -flexibly (d + 2)-choosability.

Degeneracy

Definition (degeneracy)

A graph G is *d*-degenerate if there is a vertex of degree d in every subgraph of G.

Graphs of degeneracy d

Greedy algorithm gives (d + 1)-choosability. Dvořák, Norin, Postle ε -flexibly (d + 2)-choosability.

Conjecture (Dvořák, Norin, Postle)

Is it possible to get ε -flexibly (d + 1)-choosability? At least for <u>non-regular</u> graphs of max degree d + 1?

Degeneracy

Conjecture (Dvořák, Norin, Postle)

Is it possible to get ε -flexibly (d + 1)-choosability? Challenging even for d = 2.

- 20' Dvořák, TM, Musílek, Pangrác: Planar triangle-free wFl 4-Ch
 20' Dvořák, TM, Musílek, Pangrác: Planar girth 6 2-dogen wFl 3-Ch
 19' TM: Planar C₄-free 4-dogen wFl 5-Ch
- 20+' Choi, Clemen, Ferrara, Horn, Ma, TM: Planar ...-free wFl 5-Ch or wFl 4-Ch
 - 20+' Yang, Yang: Planar (C_4, C_5) -free 3-degen wFl 4-Ch
 - 20+' Lidický, TM, Murphy, Zerbib: Planar $(K_4, C_5, C_6, C_7, B_5)$ -free 2 Planar Planar girth 5 $C_4 - Free planar WFl 4-Ch$ 5-dogen 5-ch 4-ch 4-degen 4-ch

7/14

Our Results

Conjecture (Dvořák, Norin, Postle)	
Is it possible to get ε -flexibly $d + 1$ -choosability?	???
At least for non-regular graphs of max degree Δ ?	YES!

Theorem (20' BMS)

Graph G of max degree Δ is $\frac{1}{6\Delta}$ -flexibly Δ -choosable, unless it is $K_{\Delta+1}$.

Our Results

Conjecture (Dvořák, Norin, Postle)

Is it possible to get ε -flexibly d + 1-choosability? At least for non-regular graphs of max degree Δ ?

Theorem (20' BMS)

Graph G of max degree Δ is $\frac{1}{6\Delta}$ -flexibly Δ -choosable, unless it is $K_{\Delta+1}$.

Theorem (20' BMS)

YES!

graphs of treewidth 2 (2-trees) are $\frac{1}{3}$ -flexibly 3-choosable. Answering question of Choi, Clemen, Ferrara, Horn, Ma, TM for outerplanar

Theorem (20' BMS)

graphs of treedepth k are $\frac{1}{k}$ -flexibly k-choosable.

2-trees

Theorem (20' BMS)

2-trees are $\frac{1}{3}$ -flexibly 3-choosable.

Algorithmic: we will construct six colorings:

The properties of the constructed colorings

• each color appears exactly twice at each vertex.

2-trees

The properties of the constructed colorings

• each color appears exactly twice at each vertex.

9/14

Δ -regular graphs

Theorem

BMS Graph G of max degree $\Delta \geq 3$ is $\frac{1}{6\Delta}\text{-flexibly}$ $\Delta\text{-choosable, unless it is }K_{\Delta+1}$

Δ -regular graphs

Theorem

BMS Graph G of max degree $\Delta \geq 3$ is $\frac{1}{2\Delta^3}$ flexibly Δ -choosable, unless it is $K_{\Delta+1}$

Even cycle is not flexibly 2-choosable!

Block-cut tree and ERT theorem

Definition

A block is a maximal 2-connected subgraph.

Theorem (79' Erdős, Rubin, Taylor)

G is not degree-choosable if and only if every block of G is either a clique or an odd cycle.

Proof: Δ -regular graphs

• Goal: create $R' \subseteq R$ such that $|R'| \ge \varepsilon |R|$ are the satisfied requests.

• Prone R' to be at distance ≥ 4 (keeps at least $\frac{1}{\Delta^3}$).

- Try to list color $G \setminus R'$ with modified lists.
- As $|L(v)| \ge \deg_{G \setminus R'}(v)$ use ERT characterization of degree-choosability.

Proof: Δ -regular graphs

- Goal: create $R' \subseteq R$ such that $|R'| \ge \varepsilon |R|$ are the satisfied requests.
- Prone R' to be at distance ≥ 4 (keeps at least $\frac{1}{\Delta^3}$).
- Try to list color $G \setminus R'$ with modified lists.
 - As $|L(v)| \ge \deg_{G \setminus R'}(v)$ use ERT characterization of degree-choosability.

Proof: Δ -regular graphs

- Goal: create $R' \subseteq R$ such that $|R'| \ge \varepsilon |R|$ are the satisfied requests.
- Prone R' to be at distance ≥ 4 (keeps at least $\frac{1}{\Lambda^3}$).
- Try to list color $G \setminus R'$ with modified lists.
- ✓• As $|L(v)| \ge \deg_{G \setminus R'}(v)$ use ERT characterization of degree-choosability.

If all components of $G \setminus R'$ are degree-choosable we are done!

What if some components of $G \setminus R'$ are not deg.-choosable

- If a bad component of $G \setminus R'$ cannot be list-colored by ERT, its terminal blocks must be K_{Δ} or odd cycle.
 - Every bad component has ≥ 2 neighbors in R'.
 - Solution: Ignore preferences at $\leq \frac{1}{2}|R|$ vertices to eliminate bad components.

What if some components of $G \setminus R'$ are not deg.-choosable

- If a bad component of $G \setminus R'$ cannot be list-colored by ERT, its terminal blocks must be K_{Δ} or odd cycle.
- Every bad component has ≥ 2 neighbors in R'.
- Solution: Ignore preferences at $\leq \frac{1}{2}|\vec{R}|$ vertices to eliminate bad components.

Open Directions (k-1)-tree (l - 1)-tree (l - 1)-tree

Open Directions

Are k-trees flexibly (k + 1)-choosable? Even k-path is open, even for k = 4.

Which graphs are flexibly degree-choosable? e.g.: Diamond is not

Open Directions

Are k-trees flexibly (k + 1)-choosable? Even k-path is open, even for k = 4.

Which graphs are flexibly degree-choosable?

e.g.: Diamond is not

Thank you for your attention!