MAXIMUM WEIGHT INDEPENDENT SET IN GRAPHS WITH NO LONG CLAWS IN QUASI-POLYNOMIAL TIME Peter Gartland, Daniel Lokshtanov, <u>Tomáš Masařík</u>, Marcin Pilipczuk, Michał Pilipczuk, Paweł Rzążewski

MWIS and No Long Claws \Leftarrow

Maximum Weighted Independent Set (MWIS) **Input:** Graph G with weights on vertices \mathfrak{w} and τ . **Question:** Is there a set $S \subseteq V(G)$ such that there are no edges inside S and $\sum_{v \in S} \mathfrak{w}(v) \geq \tau$?

Theorem: MWIS in Quasipolynomial Time [GLMPPR '23]

For every H that is a forest whose every component has at most three leaves, there is an algorithm for the MAXIMUM WEIGHT INDEPENDENT SET problem in H-free graphs running in time $\mathbf{n}^{\mathcal{O}_{\mathbf{H}}(\log^{19}\mathbf{n})}$.

'19 Grzesik, Klimošová, Pilipczuk, Pilipczuk

Extended Strip Lemma

- Use a tool to get **refined** extended strip decomposition of G X.
- Attempt to **return** vertices in X **one by one** to the extended strip decomposition while keeping it refined.
- If the previous fails we either get **Outcome** (i) or (ii).

The lemma [GLMPPR '23]: For every fixed integer t there exists an integer c_t and a **polynomial-time algorithm** that, given an n-vertex graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a **vertex** $v \in V(G)$, and a **refined extended strip decomposition** (H, η) of G - v, returns one of the following:

Our Toolbox

Extended strip decomposition

(i) an induced copy of $S_{t,t,t}$ in G;

(ii) c_t -dominated 0.99 τ -balanced separator;

(iii) a **refined** extended strip decomposition of G.

Extending a subdivided claw to an $S_{t,t,t}$ using the large wall W.

P Algorithmic Concepts

Outcome (iii) of the extended strip lemma

Theorem [Chudnovsky & Seymour '10]: Let G be an *n*-vertex graph and $Z \subseteq V(G)$ with $|Z| \ge 2$. There is a $\mathcal{O}(n^5)$ algorithm that returns either: • an **induced subtree** of G containing at least **three elements of** Z, or • an **extended strip decomposition** (H, η) of (G, Z).

Gyárfás' path analog for $S_{t,t,t}$

Simple divide & conquer strategy on multiplicatively smaller particles. \rightsquigarrow Quasipolynomial branching

Outcome (ii) of the extended strip lemma

c-boosted balanced separator

Simplified DEF:a set N[S] dominated by a set S of at most c vertices, such that no component of G - N[S] has more than $|V(G)|/16c^2$ vertices. **Packing lemma:** Let G be an n-vertex $S_{t,t,t}$ -free graph, s an integer, and \mathcal{F} a multi-set of subsets of V(G) such that every set in \mathcal{F} is an s-boosted balanced separator. Assume no vertex belongs to more than c sets of \mathcal{F} . Then, provided $|\mathcal{F}| \geq 80sct$, no component of G contains over 3n/4 vertices.

→ **Quasipolynomial** branching

- Packing lemma analog is true assuming only k-dominated b-balanced separators in P_t -free graphs,
- but not true for, e.g., path.

Boosting balanced separator

Boosting lemma: Let G be an n-vertex $S_{t,t,t}$ -free graph, let N[S] be a **balanced separator** for G dominated by a set S of at most c_t vertices, and let \mathcal{F} be a multi-set of $|\mathbf{relevant}(G, S)|/100c_t^3$ -balanced separators for $(G, \mathbf{relevant}(G, S))$. Assume no vertex belongs to over c sets of \mathcal{F} . If $|\mathcal{F}| \geq 10ct$, either S is a c_t -boosted balanced separator or no component of G contains more than 3n/4 vertices. \rightsquigarrow Quasipolynomial branching

Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G and $t \ge 1$, one can in polynomial time either:

- output an induced copy of $S_{t,t,t}$ in G, or
- output a set \mathcal{P} of **at most** $11 \log n + 6$ **induced paths** in G, each of length at most t+1, and an **extended strip decomposition** of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

k-dominated b-balanced separators

- DEF: Set S ⊆ V(G) such that no component of G − S has more than b vertices (or weight) and S is dominated by k vertices.
 Used to show quasipolynomial-time algorithm on P_t-free graphs (Gartland, Lokshtanov '21)
- Do not have to exist in $S_{t,t,t}$ -free graphs, e.g., line graph of a clique!

arXiv: 2305.15738