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Our Theorem

Balanced Separator
A subset of vertices S ⊆ V is a balanced separator of G = (V, E) if every connected
component of G \ S has size at most 1/2 · |V |.

Lipton & Tarjan 1979
Any planar graph with n vertices has a balanced separator of size O(

√
n) that can be found in

linear time.

Alon, Seymour, and Thomas 1990
For any integer h ≥ 1, any Kh-minor-free graph admits a balanced separator of size
O(h3/2√

n) that can be found in time O(h1/2√
nm).
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Our Theorem

Balanced Separator in Linear Time
Let G be any given graph with n vertices, and h > 0 be a parameter. There is an algorithm
that runs in deterministic O(poly(h)n) time and outputs either:

• a balanced separator of size O(poly(h)
√

n) or
• ⊥ if G contains a Kh as a minor.

Furthermore, in the latter case, we can output a Kh-minor model of G with probability at
least 1/2 in an additional randomized O(poly(h)n) time.
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Comparison of Results

Separator size Running time References
O(h3/2√

n) O(h1/2√
nm) Alon, Seymour, Thomas 90

2O(h2)n2/3 2O(h2)n Reed & Wood 09
O(h

√
n + f(h)) O(g(h) n1+ε) Kawarabayashi & Reed 10

O(h
√

n log n) O(h
√

n log nm) Plotkin, Rao, Smith 94
O(poly(h)n4/5+ε) O(poly(h) n) Wulff-Nilsen 11

O(h
√

n log n) O(poly(h) n5/4+ε) Wulff-Nilsen 11
O(poly(h)

√
n log2(n)) O(poly(h) n polylog(n)) Räcke, Shah, Täubig 14; Peng 16

O(poly(h)
√

n) O(poly(h) n) This paper
O(

√
n) O(n) Lipton & Tarjan 79—planar graphs

O(√gn) 2O(poly(g))n Gilbert, Hutchinson, Tarjan 84—genus-g graphs
Kawarabayashi, Mohar, and Reed 08

O(poly(g)
√

n) O(poly(g) n) This paper—genus-g graphs
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Stochastic Connector—Core Technique

Stochastic Connector
A stochastic connector of size k for a given graph G = (V, E) is a set of k trees
T = {T1, T2, . . . , Tk} such that:

1 |V (Ti)| ≥ n − n/(10k) for every i ∈ [k].
2 For every i, j ∈ [k] such that i ̸= j: PrP ∼R(Ti),Q∼R(Tj)[P ∩ Q ̸= ∅] ≤ 1

5k2

Lemma
Given stochastic connector T of size k in G, for any t such that 20t2 ≤ k, we can construct
a Kt-minor model of G in O(km) time with probability at least 2/5.
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5k2

Lemma
Given stochastic connector T of size k in G, for any t such that 20t2 ≤ k, we can construct
a Kt-minor model of G in O(km) time with probability at least 2/5.

Korhonen Lokstanov 24 Almost-embedding to Kt-minors
For every h ≥ 1, there is a graph H with |V (H)| + |E(H)| ≤ 3h2 such that an
almost-embedding of H can be turned into a Kh-minor model of G in O(h2m) time.
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5k2

Lemma
Given stochastic connector T of size k in G, for any t such that 20t2 ≤ k, we can construct
a Kt-minor model of G in O(km) time with probability at least 2/5.

P(G) is set of all simple paths in G. An almost-embedding of H to G is a
ϕ : V (H) → V (G) and ϕ : E(H) → P(G) such that:

1 for every e = uv ∈ E(H), ϕ(e) is a ϕ(u)-to-ϕ(v) path.
2 for any two edges e1 ̸= e2 of H that do not share an endpoint, ϕ(e1) ∩ ϕ(e2) = ∅.

Bonnet, Korhonen, Le, Li, TM Separator Theorem for Minor-Free Graphs in Linear Time 5 / 6



Algorithm—Goal:
(
1 − 1

10k

)
-balanced separator
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Algorithm—Goal:
(
1 − 1

10k

)
-balanced separator

Vertex-Weighted KPR [Klein, Plotkin, Rao 93 (unweighted)]
Given ⟨G = (V, E), w⟩ with integer weights on vertices, m edges and integer parameters
∆ > 0, h > 0. Let W =

∑
v∈V w(v). The procedure KPR(⟨G, w⟩, ∆, h) runs in time

O(h · (m + W )) and returns either:
• a pair (C∗, S) where S is a subset of vertices of size h · W/∆, and C∗ is the connected

component of maximum size of G − S, which is guaranteed to have (vertex-weighted)
weak diameter at most 6 · h2∆, or

• a Kh-minor model.

Weak diameter is diameter in G (but not in G − S).

Weighted BFS
Just weighted BFS, but it runs in linear time!
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Algorithm—Goal:
(
1 − 1

10k

)
-balanced separator

Et,v be the event that a random rooted path P ∼ R(Tt) contains v.
Algorithm gives stochastic connector (if does not end earlier)

1 Invariant 1: Pr[Ei,v] ≤ (20k3 √
n)−1 wt+1(v) for every i ≤ t and every v.

2 Invariant 2: Pr[Ei,v ∩ Ej,v] ≤ (10k6 n)−1 wt+1(v) for every i ̸= j ≤ t and every v.

3 Invariant 3:
∑

v∈V wt(v) ≤ (40 + (k3 + 1)(t − 1))n ∼ k4n.

4 Invariant 4: |V (Tt)| ≥ (1 − 1
10k )n.

5 Invariant 5: wt(v) ≥ 40 for every v.
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Stochastic Connector
A stochastic connector of size k for a given graph G = (V, E) is a set of k trees
T = {T1, T2, . . . , Tk} such that:

1 |V (Ti)| ≥ n − n/(10k) for every i ∈ [k]. Invariant 4
2 For every i, j ∈ [k] such that i ̸= j: PrP ∼R(Ti),Q∼R(Tj)[P ∩ Q ̸= ∅] ≤ 1

5k2 Inv. 2+3
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Algorithm—Goal:
(
1 − 1

10k

)
-balanced separator

Et,v be the event that a random rooted path P ∼ R(Tt) contains v.
Algorithm gives stochastic connector (if does not end earlier)

1 Invariant 1: Pr[Ei,v] ≤ (20k3 √
n)−1 wt+1(v) for every i ≤ t and every v.

2 Invariant 2: Pr[Ei,v ∩ Ej,v] ≤ (10k6 n)−1 wt+1(v) for every i ̸= j ≤ t and every v.

3 Invariant 3:
∑

v∈V wt(v) ≤ (40 + (k3 + 1)(t − 1))n ∼ k4n.

4 Invariant 4: |V (Tt)| ≥ (1 − 1
10k )n.

5 Invariant 5: wt(v) ≥ 40 for every v.

Weight change in step t of the algorithm: wt+1 = |Tt(v)|k3wt(v)√
n

.
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Algorithm—Goal:
(
1 − 1

10k

)
-balanced separator

Thank you for your attention!
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