

Separator Theorem for Minor-Free Graphs in Linear Time

Édouard Bonnet Tuukka Korhonen Hung Le Jason Li Tomáš Masařík

University of Warsaw, Poland

IBS Discrete Math Seminar

Daejeon 2026

Our Theorem

Balanced Separator

A subset of vertices $S \subseteq V$ is a **balanced separator** of $G = (V, E)$ if **every connected component of $G \setminus S$** has size at most $1/2 \cdot |V|$.

Our Theorem

Balanced Separator

A subset of vertices $S \subseteq V$ is a **balanced separator** of $G = (V, E)$ if **every connected component of $G \setminus S$** has size at most $1/2 \cdot |V|$.

Lipton & Tarjan 1979

Any **planar** graph with n vertices has a balanced separator of size $O(\sqrt{n})$ that can be found in **linear** time.

Our Theorem

Balanced Separator

A subset of vertices $S \subseteq V$ is a **balanced separator** of $G = (V, E)$ if **every connected component of $G \setminus S$** has size at most $1/2 \cdot |V|$.

Lipton & Tarjan 1979

Any **planar** graph with n vertices has a balanced separator of size $O(\sqrt{n})$ that can be found in **linear** time.

Alon, Seymour, and Thomas 1990

For any integer $h \geq 1$, any **K_h -minor-free graph** admits a balanced separator of size $O(h^{3/2}\sqrt{n})$ that can be found in time $O(h^{1/2}\sqrt{nm})$.

Our Theorem

Balanced Separator in Linear Time

Let G be any given graph with n vertices, and $h > 0$ be a parameter. There is an algorithm that runs in deterministic $O(\text{poly}(h)n)$ time and outputs either:

- a balanced separator of size $O(\text{poly}(h)\sqrt{n})$ or
- \perp if G contains a K_h **as a minor**.

Furthermore, in the latter case, we can output a K_h -minor model of G with probability at least $1/2$ in an additional randomized $O(\text{poly}(h)n)$ time.

Comparison of Results

Separator size	Running time	References
$O(h^{3/2}\sqrt{n})$	$O(h^{1/2}\sqrt{nm})$	Alon, Seymour, Thomas 90
$2^{O(h^2)}n^{2/3}$	$2^{O(h^2)}n$	Reed & Wood 09
$O(h\sqrt{n} + f(h))$	$O(g(h)n^{1+\varepsilon})$	Kawarabayashi & Reed 10

Comparison of Results

Separator size	Running time	References
$O(h^{3/2}\sqrt{n})$	$O(h^{1/2}\sqrt{nm})$	Alon, Seymour, Thomas 90
$2^{O(h^2)}n^{2/3}$	$2^{O(h^2)}n$	Reed & Wood 09
$O(h\sqrt{n} + f(h))$	$O(g(h)n^{1+\varepsilon})$	Kawarabayashi & Reed 10
$O(h\sqrt{n \log n})$	$O(h\sqrt{n \log nm})$	Plotkin, Rao, Smith 94
$O(\text{poly}(h)n^{4/5+\varepsilon})$	$O(\text{poly}(h)n)$	Wulff-Nilsen 11
$O(h\sqrt{n \log n})$	$O(\text{poly}(h)n^{5/4+\varepsilon})$	Wulff-Nilsen 11
$O(\text{poly}(h)\sqrt{n \log^2(n)})$	$O(\text{poly}(h)n \text{polylog}(n))$	Räcke, Shah, Täubig 14; Peng 16
$O(\text{poly}(h)\sqrt{n})$	$O(\text{poly}(h)n)$	This paper

Comparison of Results

Separator size	Running time	References
$O(h^{3/2}\sqrt{n})$	$O(h^{1/2}\sqrt{nm})$	Alon, Seymour, Thomas 90
$2^{O(h^2)}n^{2/3}$	$2^{O(h^2)}n$	Reed & Wood 09
$O(h\sqrt{n} + f(h))$	$O(g(h)n^{1+\varepsilon})$	Kawarabayashi & Reed 10
$O(h\sqrt{n \log n})$	$O(h\sqrt{n \log nm})$	Plotkin, Rao, Smith 94
$O(\text{poly}(h)n^{4/5+\varepsilon})$	$O(\text{poly}(h)n)$	Wulff-Nilsen 11
$O(h\sqrt{n \log n})$	$O(\text{poly}(h)n^{5/4+\varepsilon})$	Wulff-Nilsen 11
$O(\text{poly}(h)\sqrt{n \log^2(n)})$	$O(\text{poly}(h)n \text{polylog}(n))$	Räcke, Shah, Täubig 14; Peng 16
$O(\text{poly}(h)\sqrt{n})$	$O(\text{poly}(h)n)$	This paper
$O(\sqrt{n})$	$O(n)$	Lipton & Tarjan 79— planar graphs
$O(\sqrt{gn})$	$2^{O(\text{poly}(g))}n$	Gilbert, Hutchinson, Tarjan 84— genus-g graphs
$O(\text{poly}(g)\sqrt{n})$	$O(\text{poly}(g)n)$	Kawarabayashi, Mohar, and Reed 08 This paper—genus-g graphs

Stochastic Connector—Core Technique

Stochastic Connector

A **stochastic connector of size k** for a given graph $G = (V, E)$ is a **set of k trees**

$\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ such that:

- ① $|V(T_i)| \geq n - n/(10k)$ for every $i \in [k]$.
- ② For every $i, j \in [k]$ such that $i \neq j$: $\Pr_{P \sim \mathcal{R}(T_i), Q \sim \mathcal{R}(T_j)}[P \cap Q \neq \emptyset] \leq \frac{1}{5k^2}$

Stochastic Connector—Core Technique

Stochastic Connector

A **stochastic connector of size k** for a given graph $G = (V, E)$ is a **set of k trees**

$\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ such that:

- ① $|V(T_i)| \geq n - n/(10k)$ for every $i \in [k]$.
- ② For every $i, j \in [k]$ such that $i \neq j$: $\Pr_{P \sim \mathcal{R}(T_i), Q \sim \mathcal{R}(T_j)}[P \cap Q \neq \emptyset] \leq \frac{1}{5k^2}$

Lemma

Given **stochastic connector \mathcal{T}** of size k in G , for any t such that $20t^2 \leq k$, we can construct a K_t -minor model of G in $O(km)$ time with probability at least $2/5$.

Korhonen Lokstanov 24 Almost-embedding to K_t -minors

For every $h \geq 1$, there **is** a graph H with $|V(H)| + |E(H)| \leq 3h^2$ such that an almost-embedding of H can be turned into a K_h -minor model of G in $O(h^2m)$ time.

Stochastic Connector—Core Technique

Stochastic Connector

A **stochastic connector of size k** for a given graph $G = (V, E)$ is a **set of k trees**

$\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ such that:

- ① $|V(T_i)| \geq n - n/(10k)$ for every $i \in [k]$.
- ② For every $i, j \in [k]$ such that $i \neq j$: $\Pr_{P \sim \mathcal{R}(T_i), Q \sim \mathcal{R}(T_j)}[P \cap Q \neq \emptyset] \leq \frac{1}{5k^2}$

Lemma

Given **stochastic connector \mathcal{T}** of size k in G , for any t such that $20t^2 \leq k$, we can construct a K_t -minor model of G in $O(km)$ time with probability at least $2/5$.

$\mathcal{P}(G)$ is set of all simple paths in G . An **almost-embedding** of H to G is a $\phi : V(H) \rightarrow V(G)$ and $\phi : E(H) \rightarrow \mathcal{P}(G)$ such that:

- ① for every $e = uv \in E(H)$, $\phi(e)$ is a $\phi(u)$ -to- $\phi(v)$ path.
- ② for any two edges $e_1 \neq e_2$ of H **that do not share an endpoint**, $\phi(e_1) \cap \phi(e_2) = \emptyset$.

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

```
FINDSEPARATOR( $G = (V, E)$ ):  
  if  $|E| \geq 100h^2n$            ⟨G is dense⟩  
    return  $K_h$ -minor model from Lemma 4  
   $w_1(v) \leftarrow 40$  for every  $v \in V$   
   $S \leftarrow \emptyset$            ⟨The separator⟩  
   $k \leftarrow 20h^2$   
  for  $t \leftarrow 1$  to  $k$        ⟨O( $h^2$ ) iterations⟩  
     $(C_t^*, S_t, M_t) \leftarrow \text{KPR}(\langle G, w_t \rangle, \lfloor \sqrt{n}/6h^2 \rfloor, h)$     ⟨KPR with  $\Delta = \lfloor \sqrt{n}/6h^2 \rfloor$ , applying BFS  $h$  times⟩  
    if  $M_t \neq \emptyset$            ⟨ $K_h$ -minor model found⟩  
      return  $M_t$   
     $S \leftarrow S \cup S_t$   
    if  $|C_t^*| \leq (1 - \frac{1}{10k})n$     ⟨The current separator is  $(1 - \frac{1}{10k})$ -balanced⟩  
      return  $S$   
     $c_t \leftarrow$  an arbitrary vertex in  $C_t^*$   
     $T_t \leftarrow \text{BFS}(\langle G, w_t \rangle, c_t, \sqrt{n})$     ⟨BFS truncated at radius  $\sqrt{n}$ ⟩  
    for every  $v \in V(T_t)$   
       $w_{t+1}(v) \leftarrow w_t(v) + \lceil \frac{|T_t(v)|k^3}{\sqrt{n}} \cdot w_t(v) \rceil$     ⟨Reweighting vertices for next iteration⟩  
  return FINDMINOR( $G, \{T_1, T_2, \dots, T_k\}$ )    ⟨Find  $K_h$ -minor model by Lemma 3⟩
```

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

Vertex-Weighted KPR [Klein, Plotkin, Rao 93 (unweighted)]

Given $\langle G = (V, E), w \rangle$ with integer **weights on vertices**, m edges and integer parameters $\Delta > 0, h > 0$. Let $W = \sum_{v \in V} w(v)$. The procedure $\text{KPR}(\langle G, w \rangle, \Delta, h)$ runs in time $O(h \cdot (m + W))$ and returns either:

- a pair (C^*, S) where S is a subset of vertices of size $h \cdot W/\Delta$, and C^* is the connected component of **maximum size** of $G - S$, which is guaranteed to have (vertex-weighted) **weak diameter** at most $6 \cdot h^2 \Delta$, or
- a K_h -minor model.

Weak diameter is diameter in G (but not in $G - S$).

Weighted BFS

Just weighted BFS, but it runs in linear time!

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

```
FINDSEPARATOR( $G = (V, E)$ ):  
  if  $|E| \geq 100h^2n$            ⟨G is dense⟩  
    return  $K_h$ -minor model from Lemma 4  
   $w_1(v) \leftarrow 40$  for every  $v \in V$   
   $S \leftarrow \emptyset$            ⟨The separator⟩  
   $k \leftarrow 20h^2$   
  for  $t \leftarrow 1$  to  $k$            ⟨O( $h^2$ ) iterations⟩  
     $(C_t^*, S_t, M_t) \leftarrow \text{KPR}(\langle G, w_t \rangle, \lfloor \sqrt{n}/6h^2 \rfloor, h)$     ⟨KPR with  $\Delta = \lfloor \sqrt{n}/6h^2 \rfloor$ , applying BFS  $h$  times⟩  
    if  $M_t \neq \emptyset$            ⟨ $K_h$ -minor model found⟩  
      return  $M_t$   
     $S \leftarrow S \cup S_t$   
    if  $|C_t^*| \leq (1 - \frac{1}{10k})n$            ⟨The current separator is  $(1 - \frac{1}{10k})$ -balanced⟩  
      return  $S$   
     $c_t \leftarrow$  an arbitrary vertex in  $C_t^*$   
     $T_t \leftarrow \text{BFS}(\langle G, w_t \rangle, c_t, \sqrt{n})$            ⟨BFS truncated at radius  $\sqrt{n}$ ⟩  
    for every  $v \in V(T_t)$   
       $w_{t+1}(v) \leftarrow w_t(v) + \lceil \frac{|T_t(v)|k^3}{\sqrt{n}} \cdot w_t(v) \rceil$            ⟨Reweighting vertices for next iteration⟩  
  return FINDMINOR( $G, \{T_1, T_2, \dots, T_k\}$ )           ⟨Find  $K_h$ -minor model by Lemma 3⟩
```

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

$E_{t,v}$ be the event that a random rooted path $P \sim \mathcal{R}(T_t)$ contains v .

Algorithm gives stochastic connector (if does not end earlier)

- ① **Invariant 1:** $\Pr[E_{i,v}] \leq (20k^3 \sqrt{n})^{-1} w_{t+1}(v)$ for every $i \leq t$ and every v .
- ② **Invariant 2:** $\Pr[E_{i,v} \cap E_{j,v}] \leq (10k^6 n)^{-1} w_{t+1}(v)$ for every $i \neq j \leq t$ and every v .
- ③ **Invariant 3:** $\sum_{v \in V} w_t(v) \leq (40 + (k^3 + 1)(t - 1))n \sim k^4 n$.
- ④ **Invariant 4:** $|V(T_t)| \geq (1 - \frac{1}{10k})n$.
- ⑤ **Invariant 5:** $w_t(v) \geq 40$ for every v .

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

Stochastic Connector

A **stochastic connector of size k** for a given graph $G = (V, E)$ is a **set of k trees**

$\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ such that:

- ① $|V(T_i)| \geq n - n/(10k)$ for every $i \in [k]$. **Invariant 4**
- ② For every $i, j \in [k]$ such that $i \neq j$: $\Pr_{P \sim \mathcal{R}(T_i), Q \sim \mathcal{R}(T_j)}[P \cap Q \neq \emptyset] \leq \frac{1}{5k^2}$ **Inv. 2+3**

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

$E_{t,v}$ be the event that a random rooted path $P \sim \mathcal{R}(T_t)$ contains v .

Algorithm gives stochastic connector (if does not end earlier)

- ① **Invariant 1:** $\Pr[E_{i,v}] \leq (20k^3 \sqrt{n})^{-1} w_{t+1}(v)$ for every $i \leq t$ and every v .
- ② **Invariant 2:** $\Pr[E_{i,v} \cap E_{j,v}] \leq (10k^6 n)^{-1} w_{t+1}(v)$ for every $i \neq j \leq t$ and every v .
- ③ **Invariant 3:** $\sum_{v \in V} w_t(v) \leq (40 + (k^3 + 1)(t - 1))n \sim k^4 n$.
- ④ **Invariant 4:** $|V(T_t)| \geq (1 - \frac{1}{10k})n$.
- ⑤ **Invariant 5:** $w_t(v) \geq 40$ for every v .

Weight change in step t of the algorithm: $w_{t+1} = \frac{|T_t(v)|k^3 w_t(v)}{\sqrt{n}}$.

Algorithm—Goal: $(1 - \frac{1}{10k})$ -balanced separator

Thank you for your attention!