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The Problem

Finding one good solution to an algorithmic problem is often not of much use to the end user.

An Example

A vertex cover of a graph G is any subset S of its vertices such that deleting S from G gives a graph
with no edges. The Vertex Cover problem asks for a smallest vertex cover of an input graph.

Vertex Cover is used to model conflict resolution, for instance in helping Air Traffic Controllers (ATCs)
prevent aircraft collisions. Each vertex in this conflict graph G is an aircraft. There is an edge between
two vertices if the two aircraft risk interference. A vertex cover ofG gives a set of aircraft which can be
asked to change course to eliminate the risk of interference. A smallest vertex cover gives a smallest
set of aircraft to redirect. Ergo, a fast algorithm that solves the Vertex Cover problem is of great use
to ATCs.

…or is it?

Not really!

Not every choice of (say) ten aircraft to redirect is equally desirable.

It is likely better to make

smaller aircraft to change course, instead of larger ones;
cruising aircraft to change course, instead of those which are taking off or landing;

…and so on.

An algorithm that finds an arbitrary vertex cover of small size is likely of no help to an ATC.

This Is Ubiquitous

This is an issue with most “neat” algorithmic problems derived from the real world. The modelling
process throws away so much side information that one optimal solution to the final algorithmic
problem is next to useless to the practitioner.

Finding all optimal solutions is infeasible for most problems. And finding many optimal solutions
which are similar each other is not much more useful than finding one optimal solution.

Our Solution

We design fast algorithms to find a small number of good quality solutions which are dissimilar to
one another. We call this a “diverse” set of solutions.

Given a diverse set of solutions, an end‐user can choose one solution by factoring in the side
information that was lost during the modelling.

The Example, Again

Our algorithm would find a collection of (say) five sets of (say) ten aircraft each such that

Redirecting all the ten aircraft in any one set removes the risk of interference, and
No two of these sets have (say) seven or more aircraft in common.

Such a collection of good, diverse solutions would be much more useful to the ATC than just one
set of ten aircraft to divert.

The Setting

We study diverse variants of vertex‐problems on graphs. These are problems where the input is a
graph G and we are looking for an optimal (small, or large, as the case may be) subset S of vertices
of G which satisfies some desired property. Vertex Cover is an example of a vertex‐problem, and so
are hundreds of other problems of great practical interest such as Feedback Vertex Set, Dominating
Set, and Independent Set.

Our diversity measure for a collection of solutions is the sum of pairwise Hamming distances of the
vertex sets which form the solutions in the collection. Our aim is to find a small collection of optimal
solutions whose sum of pairwise Hamming distances is large.

For most interesting vertex‐problems—including Vertex Cover, Feedback Vertex Set, Dominating
Set, and Independent Set—finding one optimal solution is already NP‐hard, and so is finding a col‐
lection of such solutions. Hence we look at problems for which finding one optimal solution is
fixed‐parameter tractable (FPT) for a natural parameter, namely the treewidth t of the input graph G.

The treewidth t of graph G is a measure of how “tree‐like” it is, and graphs derived from real‐world
instances of a surprising variety of problems have been observed to have low treewidth.

An FPT algorithm with treewidth t as the parameter solves the problem in O⋆(f (t)) time, where the
O⋆() notation hides polynomial factors in the size of the input graph G. For instance, there are FPT
algorithms that solve Vertex Cover, Feedback Vertex Set, Dominating Set, and Independent Set in
running times of the form O⋆(ct) for (different) small constants c. Note that when real‐world input
graphs are (empirically) guaranteed to have bounded treewidth t these algorithms are effectively
polynomial‐time algorithms for inputs that matter, though the problems themselves are NP‐hard.
This is the great appeal of fixed‐parameter tractability.

All currently known practical FPT algorithms for such parameterizations of vertex‐problems are de‐
rived using Dynamic Programming (DP) on tree decompositions of width t. The typical parameteri‐
zation of a vertex‐problem by treewidth is as follows:

Vertex‐Problem
Input: A graph G, a tree decomposition of G of width t, and a positive integer k.
Parameter: t
Task: Find a solution of size k to the vertex‐problem for G, or report correctly that no such

solution exists.

Diverse Problems

We consider diverse versions of vertex‐problems parameterized by both the treewidth and the
number of solutions. The typical parameterization is as follows:

Diverse Vertex‐Problem
Input: A graph G, a tree decomposition of G of width t, and positive integers k, r, d.
Parameter: t, r
Task: Find a collection S = {S1, S2, . . . , Sr} of r solutions each of size k to the vertex‐

problem for G such that the diversity D(S) is at least d, or report correctly that no
such collection exists.

The diversity D(S) is defined as
D(S) =

∑
i ̸=j∈[r]

Ham(Si, Sj),

where Ham(Si, Sj) = |Si \ Sj| + |Sj \ Si| is the Hamming distance of the pair (Si, Sj).

Our Results

Our main result is that if a vertex‐problem is FPT parameterized by treewidth via an algorithm that
does DP on tree decompositions, then its diverse variant is also FPT, parameterized by treewidth
and the number of solutions.
Theorem
If Vertex‐Problem can be solved in O⋆(f (t)) time by dynamic programming on tree decomposi‐
tions then Diverse Vertex‐Problem can be solved in O⋆(f (t)r) time.

Our proof of this theorem in fact shows how to automatically transform a such a DP algorithm for
any Vertex‐Problem to an algorithm that solves the corresponding Diverse Vertex‐Problem within
the above running time bounds.

Note that the diversity bound d (which can be as big as r2 · n) does not appear in the running
time bound. This is because the dependence of the running time on d is polynomial. A naïve
dynamic programming algorithm for Diverse Vertex‐Problem would have a running time of the
form O⋆(dO(r2)f (t)r).

The Example, One Last Time

It is known that the treewidth of a graph G cannot be much more than the size of its smallest vertex
cover. This allows us to solve Diverse Vertex Cover using the above theorem, even if the tree
decomposition is not part of the input. In the following the integers k, r, d have the same meanings
as in the definition of Diverse Vertex‐Problem.

Theorem
Let G be a graph, and let k, r, d be integers. There is an algorithm which solves theDiverse Vertex
Cover problem for inputs (G, k, r, d) in time O⋆((2(k+2) · (k + 1))r).

More Results: Kernelization

The notion of kernelization from Parameterized Complexity Theory captures the effectiveness of
polynomial‐time preprocessing in a mathematically quantifiable manner. A kernelization algorithm
for a parameterized problem with parameter k is a polynomial‐time algorithm that converts any
instance of the problem to an equivalent instance whose size is upper‐bounded by a function f (k)
of the parameter k alone. The latter instance is called a kernel of size at most f (k).
We show that the diverse variants of several basic problems, when parameterized by the solution
size k and the number r of diverse solutions, admit kernels of polynomial size. In particular we show

Theorem
The following diverse subset minimization problems parameterized by k + r admit polynomial
kernels:

Diverse Vertex Cover, on O(k(k + r)) vertices;
Diverse d‐Hitting Set for fixed d, on O(kd + kr) vertices;
Diverse Point Line Cover, on O(k(k + r)) points;
Diverse Feedback Arc Set in Tournaments, on O(k(k + r)) vertices.
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