Constricting the computational complexity gap of the 4-coloring problem in (P_t, C_3) -free graphs

Justyna Jaworska, Bartolomiej Kielak, Tomáš Masařík, Jana Masaříková

Institute of Informatics, University of Warsaw, Poland

Cycles and Colourings 04 September, 2025

Notation

H-free graph: no copy of H as an induced subgraph.

Notation

H-free graph: no copy of H as an induced subgraph.

nos Cy-free

 (H_1,\ldots,H_k) -free graph: H_1 -free and...and H_k -free.

 P_t : path on t vertices

 C_t : cycle on t vertices

not (741 C3)-free

k-COLORING in H-free graphs

For every $k \geq 3$, k-Coloring on H-free graphs is NP-complete if H contains a cycle [Emden-Weinert, Hougardy, Kreuter 98] or

k-COLORING in H-free graphs

For every $k \geq 3$, k-Coloring on H-free graphs is NP-complete if H contains a cycle [Emden-Weinert, Hougardy, Kreuter 98] or an induced claw [Holyer 81 & Leven, Galil 83].

k-COLORING in H-free graphs

For every $k \geq 3$, $k\text{-}\mathrm{COLORING}$ on $H\text{-}\mathrm{free}$ graphs is NP-complete if H contains a cycle [Emden-Weinert, Hougardy, Kreuter 98] or an induced claw [Holyer 81 & Leven, Galil 83].

Hence, it remains to consider the case where every connected component of H is a path (i.e., H is a disjoint union of paths.) Example (disjoint union of paths):

$$H = 2P_2 + P_3 + P_4$$

k-Coloring of P_t -free graphs

	$k ext{-Coloring of } P_t ext{-free graphs}$				
t	k=3	k=4	k = 5	$k \ge 6$	
$t \leq 5$	Р	Р	Р	Р	
t = 6	Р	Р	NP-c	NP-c	
t = 7	Р	NP-c	NP-c	NP-c	
$t \ge 8$?	NP-c	NP-c	NP-c	

'08 Hoang, Kaminski, Lozin, Sawada, Shu

'16 Huang

'04 Randerath, Schiermeyer

'19 Spirkl, Chudnovsky, Zhong

'17 Bonomo, Chudnovsky, Maceli, Schaudt, Stein, Zhong

k-Coloring of P_t -free graphs

	$k ext{-Coloring}$ of $P_t ext{-free}$ graphs				
t	k = 3	k=4	k = 5	$k \ge 6$	
$t \leq 5$	Р	Р	Р	Р	
t = 6	Р	Р	NP-c	NP-c	
t = 7	Р	NP-c	NP-c	NP-c	
$t \ge 8$	QP	NP-c	NP-c	NP-c	

'08 Hoang, Kaminski, Lozin, Sawada, Shu

'16 Huang

'04 Randerath, Schiermeyer

'19 Spirkl, Chudnovsky, Zhong

'17 Bonomo, Chudnovsky, Maceli, Schaudt, Stein, Zhong

'21 Pilipczuk, Pilipczuk, Rzążewski

k-Coloring of P_t -free graphs

	$k ext{-Coloring of } P_t ext{-free graphs}$				
t	k = 3	k = 4	k = 5	$k \ge 6$	
$t \leq 5$	Р	Р	Р	Р	
t = 6	Р	Р	NP-c	NP-c	
t = 7	Р	NP-c	NP-c	NP-c	
$t \ge 8$	QP	NP-c	NP-c	NP-c	

'08 Hoang, Kaminski, Lozin, Sawada, Shu

'16 Huang

'04 Randerath, Schiermeyer

'19 Spirkl, Chudnovsky, Zhong

'17 Bonomo, Chudnovsky, Maceli, Schaudt, Stein, Zhong

'21 Pilipczuk, Pilipczuk, Rzążewski

4-Coloring of (P_t, C_ℓ) -free graphs

	$\ell = 3$	$\ell = 4[1]$	$\ell \in \{5,6\}[2]$	$\ell = 7[2]$	$\ell \geq 8[2]$
$t \le 6[3]$	Р	Р	Р	Р	Р
$7 \le t \le 8$?	Р	NP-c	?	NP-c
$9 \le t \le 18$?	Р	NP-c	NP-c	NP-c
$19 \le t \le 21$?	Р	NP-c	NP-c	NP-c
$t \ge 22$	NP-c [4]	Р	NP-c	NP-c	NP-c

- [1] '14, Golovach, Paulusma, Song
- [2] '17 Hell, Huang
- [3] '21 ('24) Chudnovsky, Spirkl, Zhong
- [4] '15 Huang, Johnson, Paulusma

4-Coloring of (P_t, C_ℓ) -free graphs

	$\ell = 3$	$\ell = 4[1]$	$\ell \in \{5,6\}[2]$	$\ell = 7[2]$	$\ell \geq 8[2]$
$t \le 6[3]$	Р	Р	Р	Р	Р
$7 \le t \le 8$?	Р	NP-c	?	NP-c
$9 \le t \le 18$?	Р	NP-c	NP-c	NP-c
$19 \le t \le 21$	NP-c	Р	NP-c	NP-c	NP-c
$t \ge 22$	NP-c [4]	Р	NP-c	NP-c	NP-c

- [1] '14, Golovach, Paulusma, Song
- [2] '17 Hell, Huang
- [3] '21 ('24) Chudnovsky, Spirkl, Zhong
- [4] '15 Huang, Johnson, Paulusma

REDUCTION BY Huang, Johnson, Paulusma

MNAE 3-SAT

HOW TO ENFORCE THE COLORS 2

HOW TO ENFORCE THE COLORS 2

HOW TO ENFORCE THE COLORS 2

5th Hycielski graph
without specific edge
4-colotable

- · C3-free
- · four special rettices (in every coloning distinct colors)
- · longest induced path V

? C3 - FREE ?

... NOT YET

C3-FREE

· new 'pendant' rertices

P22-FREE

OUR RESULT

4-COLORING ON
$$(P_{19}, C_3) - FREE$$
 is NP-compolete

M 1 5th Hycielski Specific Vertex

COLORS ENFORCEMENT

No pendant vertices

COLORS ENFORCEMENT

COLORS ENFORCEMENT

FINAL COMMENTS

• Where is 74.8°

Thank you for your attention!

