Parameterized complexity of fair deletion problems

Tomáš Toufar, Tomáš Masařík

Department of Applied Mathematics, Charles University, Czech Republic Computer Science Institute, Charles University, Czech Republic E-mail: masarik@kam.mff.cuni.cz, toufi@iuuk.mff.cuni.cz

Deletion problems

- In edge deletion problem, we are given a graph G and a graph property π , the goal is to find a subset F of edges such that $G \setminus F$ satisfies π .
- Similarly, in *vertex deletion problems*, the task is to find a subset W of vertices such that $G \setminus W$ satisfies π .

Examples

• VERTEX COVER: Find set of vertices W such that $G \setminus W$ is an *independent set*.

Considered graph parameters

• Every problem considered is parameterized by $|\psi|$ (this is necessary for every metatheorem)

Structural parameters

• $tw(\mathbf{G})$ – the *tree-width* of a graph G• $pw(\mathbf{G})$ – the *path-width* of a graph G

• FEEDBACK VERTEX SET: Find set of vertices W such that $G \setminus W$ is *acyclic*. • FEEDBACK ARC SET: Find set of edges F such that $G \setminus F$ is *acyclic*. • PERFECT MATCHING: Find set of edges F such that $G \setminus F$ is 1-regular.

Usually (VERTEX COVER, FEEDBACK ARC SET, ...) just finding a set satisfying given property is trivial. In those cases, we aim to find *smallest* such set (or a set smaller than a given size).

Fair deletion problems

In fair deletion problems, instead of finding small set, we require that the set is locally *small* in the following sense:

• For the *edge variant*, we aim to find set of edges F such that (V, F) has small degree (i.e. there is small number of deleted edges incident to each vertex).

• For the vertex variant, we want to find set of vertices W such that $|N(v) \cap W|$ is small. (i.e. there is small number of deleted neighbors for each vertex).

Graph properties and Logic

Our aim is to study all reasonable properties at once; in the spirit of Courcelle's theorem, we consider all properties expressible in *Monadic second order logic*. Monadic second order logic is an extension of First Order logic where we can additionally quantify over sets of elements.

• $fvs(\mathbf{G})$ – the size of *minimum feedback vertex set* of a graph G• $vc(\mathbf{G})$ – the size of *minimum vertex cover* of a graph G• $nd(\mathbf{G})$ – the *neighborhood diversity* of a graph G

Parameter relationship

Arrow from parameter p to q means that p can be bounded by a function of q (in other words, p is more restrictive).

Our results

Hardness

• The generalized version of fair deletion problem (both vertex and edge variant) is W[1]-hard for combined parameterization by $|\psi|$, fvs(G), and pw(G).

There are two versions of MSO logic for graphs, depending on which structure we use to represent a graph:

Monadic Second Order logic

 MSO_1 : The graph is described by its vertex set and a binary adjacency relation $adj(\cdot, \cdot)$. MSO₂: The graph is described by its vertex set, its edge set and a binary *incidence* relation $inc(\cdot, \cdot)$.

Since adj can be defined in terms of inc, MSO_2 is a generalization of MSO_1 , as we can additionally quantify over edges and sets of edges.

It is known that MSO_2 is strictly stronger than MSO_1 : the property that a graph is Hamiltonian can be expressed in MSO_2 but not in MSO_1

Generalization of deletion problems

Kolman et al. considered a generalization of deletion problems: instead of requiring that $G \setminus F \models \psi$, we require that $G \models \psi'(F)$. This way we can still impose conditions on $G \setminus F$, but additionally, we can impose conditions on F itself.

This can be used to describe for example MATCHING-CUT.

Previous results

• There is no algorithm with running time $f(|\psi|, k)n^{o(\sqrt{k})}$ (where k = fvs(G) + pw(G)), unless Exponential Time Hypothesis fails.

FPT algorithms

- The generalized MSO_1 version is FPT with respect to nd(G). (MSO_2 version is hopeless, since MSO_2 model checking is hard even on cliques).
- The generalized MSO_2 version is FPT with respect to vc(G).

Proof sketch

We reduce EQUITABLE MSO PARTITION to both FAIR VERTEX DELETION and FAIR EDGE DELETION. Hardness follows from hardness of particular instances of EQUITABLE MSO PARTITIONS: one can use EQUITABLE COLORING OF EQUITABLE CONNECTED PARTITION.

Open questions

• Can be the lower bounds extended to the non-generalized variant of deletion problems? • Can the lower bound $f(|\psi|, k)n^{o(\sqrt{k})}$ be improved?

- NP-completeness of FAIR FEEDBACK EDGE SET by Lin and Sahni.
- $\mathcal{O}(\sqrt{n})$ -approximation for FAIR ODD CYCLE TRANSVERSAL by Kolman et al. • $n^{\mathcal{O}(\mathrm{tw}(G))}$ algorithm for the generalized version by Kolman et al. (the only previous result in the metatheorem context).

Funding: This research was supported by the project GAUK 338216 and by the project SVV-2016-260332.

