Clique-Width: Harnessing the Power of Atoms

Konrad Dabrowski, Tomáš Masařík, Jana Novotná, Daniël Paulusma, Paweł Rzążewski

> University of Warsaw, Poland Charles University, Czech Republic

> > June 7, 2020

A graph class is *hereditary* if it is closed under vertex deletion.

Definitions

A graph class is *hereditary* if it is closed under vertex deletion.

• uniquely characterized by a minimal (not necessarily finite) set of forbidden induced subgraphs

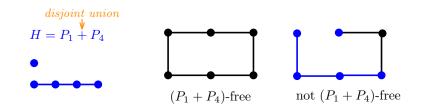
Definitions

A graph class is *hereditary* if it is closed under vertex deletion.

 uniquely characterized by a minimal (not necessarily finite) set of forbidden induced subgraphs

A graph is \bullet *H*-free if it does not contain *H* as an induced subgraph

• (H_1, H_2) -free if it is H_1 -free and H_2 -free.



Definitions

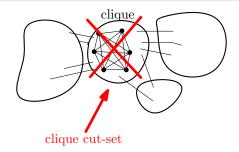
A graph class is *hereditary* if it is closed under vertex deletion.

 uniquely characterized by a minimal (not necessarily finite) set of forbidden induced subgraphs

A graph is \bullet *H*-free if it does not contain *H* as an induced subgraph

• (H_1, H_2) -free if it is H_1 -free and H_2 -free.

An atom is a connected graph with no clique cut-set



2/10

The *clique-width* of a graph is the minimum number of labels required to construct the graph using the operations:

- create a new graph from a single vertex with a label,
- take the disjoint union of two labelled graphs,
- rename all labels i to j
- connect all vertices with label *i* to all vertices with label *j*.

The *clique-width* of a graph is the minimum number of labels required to construct the graph using the operations:

- create a new graph from a single vertex with a label,
- take the disjoint union of two labelled graphs,
- rename all labels i to j
- connect all vertices with label *i* to all vertices with label *j*.

A graph class has *bounded clique-width* if there exists a constant c which upper-bounds the clique-width of each graph in the class.

• bounded clique-width

 \rightsquigarrow polynomial algorithm for large collection of NP-hard problems (problems definable in MSO₁—(*Courcelle, Makowsky, Rotics*), ...)

e.g., Coloring, Maximum Independent Set, ...

• bounded clique-width

 \rightsquigarrow polynomial algorithm for large collection of NP-hard problems (problems definable in MSO₁—(*Courcelle, Makowsky, Rotics*), ...)

e.g., Coloring, Maximum Independent Set, ...

- atoms + hereditary class C
 - some problems polynomial time solvable on the atoms of \mathcal{C} \rightsquigarrow polynomial-time solvable on graph class \mathcal{C}

e.g., Coloring, Maximum Independent Set, Maximum Clique, Maximum Induced Matching, ...

• Long-standing study on boundedness of clique-width for hereditary graph classes

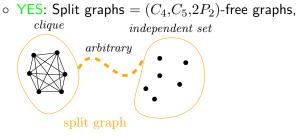
- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (*H*₁,*H*₂)-free graphs: five open cases.

- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?

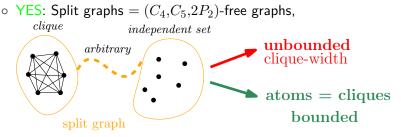
- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?

• YES: Split graphs = $(C_4, C_5, 2P_2)$ -free graphs,

- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?



- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?



- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?
 - YES: Split graphs = $(C_4, C_5, 2P_2)$ -free graphs,
 - YES: (cap,even-hole)-free graphs (*Cameron, da Silva, Huang, Vušković, 2018*),

- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?
 - YES: Split graphs = $(C_4, C_5, 2P_2)$ -free graphs,
 - YES: (cap,even-hole)-free graphs (*Cameron, da Silva, Huang, Vušković, 2018*),
 - \circ **NO**: in *H*-free graphs,

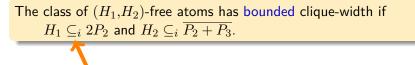
- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?
 - YES: Split graphs = $(C_4, C_5, 2P_2)$ -free graphs,
 - YES: (cap,even-hole)-free graphs (*Cameron, da Silva, Huang, Vušković, 2018*),
 - NO: in *H*-free graphs,
 - YES: Every (C_4, P_6) -free atom has clique-width at most 18 (*Gaspers, Huang, Paulusma, 2019*).

- Long-standing study on boundedness of clique-width for hereditary graph classes
- Survey (*Dabrowski, Johnson, Paulusma, 2019*): boundedness of clique-width of (H_1, H_2) -free graphs: five open cases.
- Do exist hereditary graph classes of unbounded clique-width whose atoms have bounded clique-width?
 - YES: Split graphs = $(C_4, C_5, 2P_2)$ -free graphs,
 - YES: (cap,even-hole)-free graphs (*Cameron, da Silva, Huang, Vušković, 2018*),
 - \circ NO: in *H*-free graphs,
 - YES: Every (C_4, P_6) -free atom has clique-width at most 18 (*Gaspers, Huang, Paulusma, 2019*).

Our goal: Which (H_1, H_2) -free graph classes of unbounded clique-width have the property that their atoms have bounded clique-width?

5/10

Our results



induced subgraph

Our results

The class of (H_1, H_2) -free atoms has bounded clique-width if $H_1 \subseteq_i 2P_2$ and $H_2 \subseteq_i \overline{P_2 + P_3}$.

The class of (H_1, H_2) -free atoms has unbounded clique-width if $H_1 \not\in S$ and $H_2 \not\in S$ $H_1 \notin \overline{S}$ and $H_2 \notin \overline{S}$ $H_1 \supset_i K_3 + P_1$ and $H_2 \supset_i 4P_1$ or $2P_2$ $H_1 \supset_i K_{1,3}$ and $H_2 \supset_i K_4$ or C_4 $H_1 \supset_i \overline{2P_1 + P_2}$ and $H_2 \supset_i K_{1,3}, 5P_1, P_2 + P_4$ or $P_1 + P_6$ $H_1 \supset_i 2P_1 + P_2$ and $H_2 \supset_i K_3 + P_1, K_5, P_2 + P_4$ or $P_1 + P_6$ $H_1 \nearrow_i K_3$ and $H_2 \supset_i 2P_1 + 2P_2, 2P_1 + P_4, 4P_1 + P_2, 3P_2$ or $2P_3$ induced $H_1 \supseteq_i 3P_1$ and $H_2 \supseteq_i \overline{2P_1 + 2P_2}, \overline{2P_1 + P_4}, \overline{4P_1 + P_2}, \overline{3P_2}$ or $\overline{2P_3}$ subgraph $H_1 \supseteq_i K_4$ and $H_2 \supseteq_i P_1 + P_4, 3P_1 + P_2$ or $2P_2$ $H_1 \supset_i 4P_1$ and $H_2 \supset_i \overline{P_1 + P_4}, \overline{3P_1 + P_2}$ or C_4 $H_1 \supset_i \overline{P_1 + P_4}$ and $H_2 \supset_i P_1 + 2P_2$ $H_1 \supset_i P_1 + P_4$ and $H_2 \supset_i \overline{P_1 + 2P_2}$ $H_1 \supset_i 2P_2$ and $H_2 \supset_i \overline{P_2 + P_4}, \overline{3P_2}$ or $\overline{P_5}$, or $H_1 \supset_i P_1 + 2P_2$ or P_6 and $H_2 \supset_i \overline{P_1 + 2P_2}$ or $\overline{P_2 + P_3}$.

Our results

The class of (H_1, H_2) -free atoms has bounded clique-width if $H_1 \subseteq_i 2P_2$ and $H_2 \subseteq_i \overline{P_2 + P_3}$.

The class of (H_1, H_2) -free atoms has unbounded clique-width if $H_1 \not\in S$ and $H_2 \not\in S$ $H_1 \notin \overline{S}$ and $H_2 \notin \overline{S}$ $H_1 \supset_i K_3 + P_1$ and $H_2 \supset_i 4P_1$ or Clique-width classified $H_1 \supset_i K_{1,3}$ and $H_2 \supset_i K_4$ or C_4 for all but 10 + 12 = 22 $H_1 \supset_i \overline{2P_1 + P_2}$ and $H_2 \supset_i K_{1,3}$, (H_1, H_2) -free atoms. $H_1 \supset_i 2P_1 + P_2$ and $H_2 \supset_i K_3 +$ $H_1 \nearrow_i K_3$ and $H_2 \supset_i 2P_1 + 2P_2$, induced $H_1 \supseteq_i 3P_1$ and $H_2 \supseteq_i \overline{2P_1 + 2P_2}, \overline{2P_1 + P_4}, \overline{4P_1 + P_2}, \overline{3P_2}$ or $\overline{2P_3}$ subgraph $H_1 \supseteq_i K_4$ and $H_2 \supseteq_i P_1 + P_4, 3P_1 + P_2$ or $2P_2$ $H_1 \supset_i 4P_1$ and $H_2 \supset_i \overline{P_1 + P_4}, \overline{3P_1 + P_2}$ or C_4 $H_1 \supset_i \overline{P_1 + P_4}$ and $H_2 \supset_i P_1 + 2P_2$ $H_1 \supset_i P_1 + P_4$ and $H_2 \supset_i \overline{P_1 + 2P_2}$ $H_1 \supseteq_i 2P_2$ and $H_2 \supseteq_i \overline{P_2 + P_4}, \overline{3P_2}$ or $\overline{P_5}$, or $H_1 \supset_i P_1 + 2P_2$ or P_6 and $H_2 \supset_i \overline{P_1 + 2P_2}$ or $\overline{P_2 + P_3}$.

What makes working with atoms more "difficult"?

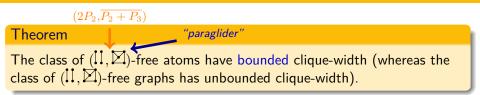
 $\ensuremath{\mathfrak{S}}$ removing vertices

What makes working with atoms more "difficult"?

- $\ensuremath{\textcircled{}}$ removing vertices
- $\ensuremath{\mathfrak{S}}$ complementation operation

- ☺ removing vertices
- $\ensuremath{\mathfrak{S}}$ complementation operation

 (C_4, P_5) -free atoms: bounded clique-width (known) $(\overline{C_4}, \overline{P_5})$ -free atoms: unbounded clique-width



 $(2P_2, \overline{P_2} + \overline{P_3})$ Theorem "paraglider"
The class of $(11, \square)$ -free atoms have bounded clique-width (whereas the class of $(11, \square)$ -free graphs has unbounded clique-width).

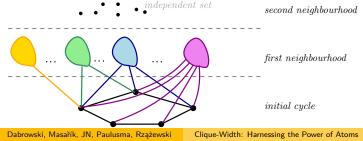
- (i) (\amalg, \bowtie) -free atoms with an induced C_5 ,
- (*ii*) (C_5, \amalg, \boxtimes) -free atoms with an induced C_4 ,
- (*iii*) $(C_4, C_5, \coprod, \boxtimes)$ -free atoms (known to have bounded clique-width).

 $(2P_2, \overline{P_2 + P_3})$ Theorem "paraglider"
The class of $(1, \overline{\square})$ -free atoms have bounded clique-width (whereas the class of $(1, \overline{\square})$ -free graphs has unbounded clique-width).

- (i) (\amalg, \bowtie) -free atoms with an induced C_5 ,
- (*ii*) (C_5, \amalg, \boxtimes) -free atoms with an induced C_4 ,
- (*iii*) $(C_4, C_5, \coprod, \boxtimes)$ -free atoms (known to have bounded clique-width).
- Analyzing the neighbourhoods of C_5 or C_4 :

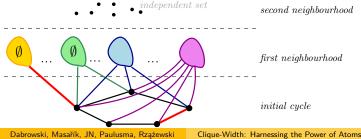
 $(2P_2, \overline{P_2} + \overline{P_3})$ Theorem "paraglider"
The class of $(11, \overline{\square})$ -free atoms have bounded clique-width (whereas the class of $(11, \overline{\square})$ -free graphs has unbounded clique-width).

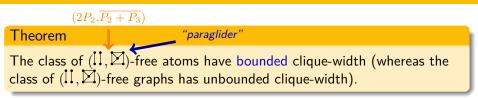
- (i) (\amalg, \boxtimes) -free atoms with an induced C_5 ,
- (*ii*) (C_5, \amalg, \boxtimes) -free atoms with an induced C_4 ,
- (*iii*) $(C_4, C_5, \amalg, \boxtimes)$ -free atoms (known to have bounded clique-width).
- Analyzing the neighbourhoods of C_5 or C_4 :



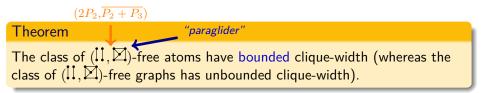
 $(2P_2,\overline{P_2}+\overline{P_3})$ Theorem "paraglider"
The class of $(11, \square)$ -free atoms have bounded clique-width (whereas the class of $(11, \square)$ -free graphs has unbounded clique-width).

- (i) (\amalg, \bowtie) -free atoms with an induced C_5 ,
- (*ii*) (C_5, \amalg, \boxtimes) -free atoms with an induced C_4 ,
- (*iii*) $(C_4, C_5, \amalg, \bowtie)$ -free atoms (known to have bounded clique-width).
- Analyzing the neighbourhoods of C_5 or C_4 :

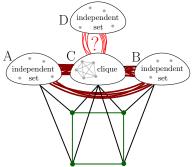


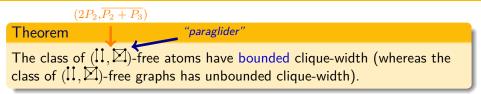


Proof sketch: Where atoms helped?

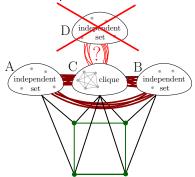


Proof sketch: *Where atoms helped?*





Proof sketch: *Where atoms helped?*



Open Problems

Does the class of (H_1, H_2) -free atoms have bounded clique-width if (i) $H_1 = P_6$ and $H_2 \in \{\overline{2P_1 + P_2}, \overline{P_1 + P_4}\}$ (v) $H_1 = \overline{P_6}$ and $H_2 \in \{2P_1 + P_2, P_1 + P_4\}$ (ii) $H_1 = C_4$ and $H_2 \in \{P_1 + 2P_2, P_2 + P_4, 3P_2\}$ (iii) $H_1 = \overline{P_1 + 2P_2}$ and $H_2 \in \{2P_2, P_2 + P_3, P_5\}$ (iv) $H_1 = \overline{P_2 + P_3}$ and $H_2 \in \{P_2 + P_3, P_5\}$ *(vi) $H_1 = K_3$ and $H_2 \in \{P_1 + S_{1,1,3}, S_{1,2,3}\}$ *(vii) $H_1 = 3P_1$ and $H_2 \in \{\overline{P_1 + S_{1,1,3}}, \overline{S_{1,2,3}}\}$ *(viii) $H_1 = 2P_1 + P_2$ and $H_2 \in \{P_1 + P_2 + P_3, P_1 + P_5\}$ *(ix) $H_1 = 2P_1 + P_2$ and $H_2 \in \{\overline{P_1 + P_2 + P_3}, \overline{P_1 + P_5}\}$ *(x) $H_1 = \overline{P_1 + P_4}$ and $H_2 = P_2 + P_3$ or *(xi) $H_1 = P_1 + P_4$ and $H_2 = \overline{P_2 + P_3}$.

Thank you for your attention!

10/10