Proper Rainbow Saturation Numbers for Cycles

Anastasia Halfpap Bernard Lidický Tomáš Masařík

University of Warsaw, Poland

A graph G is F-saturated if it is:

- F-free (i.e., does not contain F as a subgraph),
- but for any $e \in \binom{V(G)}{2} \setminus E(G)$, the graph G + e contains F.

A graph G is F-saturated if it is:

- F-free (i.e., does not contain F as a subgraph),
- but for any $e \in \binom{V(G)}{2} \setminus E(G)$, the graph G + e contains F.

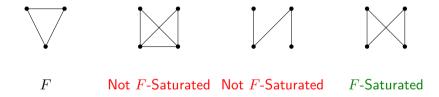
F

Not F-Saturated Not F-Saturated

F-Saturated

A graph G is F-saturated if it is:

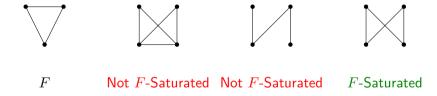
- F-free (i.e., does not contain F as a subgraph),
- but for any $e \in \binom{V(G)}{2} \setminus E(G)$, the graph G + e contains F.



In other words: F-saturated graphs are edge-maximal F-free graphs.

A graph G is F-saturated if it is:

- F-free (i.e., does not contain F as a subgraph),
- but for any $e \in \binom{V(G)}{2} \setminus E(G)$, the graph G + e contains F.



In other words: F-saturated graphs are edge-maximal F-free graphs.

Question: given F and n, how sparse (or dense) can an n-vertex, F-saturated graph be?

Turán and Saturation Numbers

The Turán number of F is

ex(n, F) = maximum number of edges in an n-vertex, F-saturated graph.

Turán and Saturation Numbers

The Turán number of F is

ex(n, F) = maximum number of edges in an n-vertex, F-saturated graph.

while the saturation number of F is

sat(n, F) = minimum number of edges in an *n*-vertex, *F*-saturated graph.

Turán and Saturation Numbers

The Turán number of F is

ex(n, F) = maximum number of edges in an n-vertex, F-saturated graph.

while the saturation number of F is

sat(n, F) = minimum number of edges in an n-vertex, F-saturated graph.

Classical problems with very extensive history.

An edge-coloring of G is an assignment of colors to edges.

An edge-coloring of G is an assignment of colors to edges.

Proper = any two edges that share a vertex get different colors

Rainbow = any two edges get different colors

An edge-coloring of G is an assignment of colors to edges.

Proper = any two edges that share a vertex get different colors

Rainbow = any two edges get different colors

One appealing variant is to ask Turán or saturation problems in an edge-colored setting.

An edge-coloring of G is an assignment of colors to edges.

Proper = any two edges that share a vertex get different colors

Rainbow = any two edges get different colors

One appealing variant is to ask Turán or saturation problems in an edge-colored setting.

Definition (Rainbow Saturation Number—Introduced by Barrus, Ferrara, Vandenbussche, Wenger 2017)

Given an integer t and a graph H. The t-rainbow saturation number is the minimum number of edges in a t-edge-colored graph G on n vertices such that G does not contain a rainbow copy of H, but adding to G a new edge in any color creates a rainbow copy of H.

An edge-coloring of G is an assignment of colors to edges.

Proper = any two edges that share a vertex get different colors

Rainbow = any two edges get different colors

One appealing variant is to ask Turán or saturation problems in an edge-colored setting.

Definition (Rainbow Saturation Number— Introduced by Barrus, Ferrara, Vandenbussche, Wenger 2017)

Given an integer t and a graph H. The t-rainbow saturation number is the minimum number of edges in a t-edge-colored graph G on n vertices such that G does not contain a rainbow copy of H, but adding to G a new edge in any color creates a rainbow copy of H.

Does not assume a setting of proper edge-colorings.

Proper Rainbow Saturation Number

Problem: Make properly edge-colored graphs G with no rainbow copy of F. How should our "edge maximality" condition look?

Proper Rainbow Saturation Number

Problem: Make properly edge-colored graphs G with no rainbow copy of F. How should our "edge maximality" condition look?

A graph G is (properly) rainbow F-saturated if

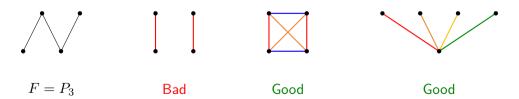
- G has a proper edge-coloring with no rainbow copy of F;
- If we add any edge e, then G+e cannot be properly edge-colored while avoiding a rainbow F.

Proper Rainbow Saturation Number

Problem: Make properly edge-colored graphs G with no rainbow copy of F. How should our "edge maximality" condition look?

A graph G is (properly) rainbow F-saturated if

- G has a proper edge-coloring with no rainbow copy of F;
- If we add any edge e, then G + e cannot be properly edge-colored while avoiding a rainbow F.



Largest Cases

The **maximum number of edges** in an n-vertex, properly rainbow F-saturated graph is the rainbow Turán number $ex^*(n, F)$.

Introduced by: Keevash, Mubayi, Sudakov, and Verstraëte 2007

Largest Cases

The **maximum number of edges** in an n-vertex, properly rainbow F-saturated graph is the rainbow Turán number $ex^*(n, F)$.

Introduced by: Keevash, Mubayi, Sudakov, and Verstraëte 2007

Example:

$$F = P_3$$

$$\exp^*(n, P_3) \approx \frac{3n}{2}$$

Comparison: $ex(n, P_3) \approx n$.

Smallest Cases

The **minimum number of edges** in an n-vertex, properly rainbow F-saturated graph is the *(proper) rainbow saturation number* $\operatorname{sat}^*(n, F)$.

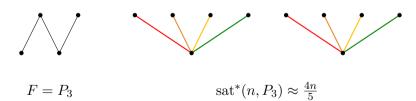
Introduced by: Bushaw, Johnston, and Rombach 2022

Smallest Cases

The **minimum number of edges** in an n-vertex, properly rainbow F-saturated graph is the *(proper) rainbow saturation number* $\operatorname{sat}^*(n, F)$.

Introduced by: Bushaw, Johnston, and Rombach 2022

Example:



Comparison: $sat(n, P_3) \approx \frac{n}{2}$.

Finding $\operatorname{sat}^*(n,F)$ seems hard for most choices of F. But some exact results are known!

Finding $sat^*(n, F)$ seems hard for most choices of F. But some exact results are known!

Theorem (Bushaw-Johnston-Rombach, 2022)

For all n,

$$\operatorname{sat}^*(n, P_3) = \frac{4n}{5} + O(1).$$

Finding $sat^*(n, F)$ seems hard for most choices of F. But some exact results are known!

Theorem (Bushaw-Johnston-Rombach, 2022)

For all n,

$$\operatorname{sat}^*(n, P_3) = \frac{4n}{5} + O(1).$$

Very rough proof idea: disjoint copies of $K_{1,4}$ gives the upper bound. For the lower bound, what components of a rainbow saturated graph could be sparser than $K_{1,4}$?

Theorem (HLM 2025)

For all n,

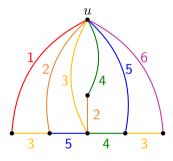
$$\operatorname{sat}^*(n, C_4) \le \frac{11n}{6} + O(1).$$

Moreover, for any $\varepsilon>0$, there exists $n_0\in\mathbb{N}$ such that, if $n\geq n_0$ and G is an n-vertex, properly rainbow C_4 -saturated graph, then G has more than $\left(\frac{11}{6}-\varepsilon\right)n$ edges.

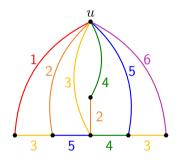
Previously known: Bushaw, Johnston, and Rombach bounded

$$n \le \operatorname{sat}^*(n, C_4) \le 2n - 2.$$

Determining $sat^*(n, C_4)$: A Construction



Determining $sat^*(n, C_4)$: A Construction



To scale up this construction: Take a universal u adjacent to coppies of $S_{2,2,1}$.

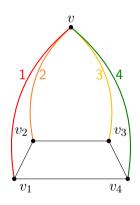
Number of edges: n-1 edges ending at u. For the rest, sets of 6 vertices yield 5 edges each. Total is $\approx \frac{11n}{6}$.

Lemma

- **1)** A copy of K_3 with pendant edges from two vertices;
- $2 C_4$; \square
- 3 A copy of C_k with a pendant edge, for any $k \geq 5$;
- **4** The double star $D_{2,2}$, or any subdivision thereof.

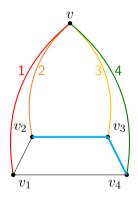
Lemma

- **1** A copy of K_3 with pendant edges from two vertices;
- \mathbf{O} C_4 ; \square
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- **4** The double star $D_{2,2}$, or any subdivision thereof.



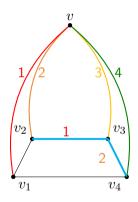
Lemma

- **1)** A copy of K_3 with pendant edges from two vertices;
- **2** C_4 ;
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- 4 The double star $D_{2,2}$, or any subdivision thereof.



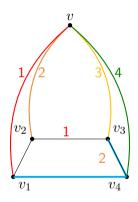
Lemma

- **1** A copy of K_3 with pendant edges from two vertices;
- **2** C_4 ;
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- 4 The double star $D_{2,2}$, or any subdivision thereof.



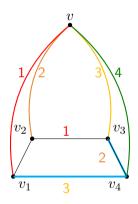
Lemma

- **1)** A copy of K_3 with pendant edges from two vertices;
- **2** C_4 ;
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- 4 The double star $D_{2,2}$, or any subdivision thereof.



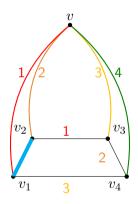
Lemma

- **1)** A copy of K_3 with pendant edges from two vertices;
- **2** C_4 ;
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- 4 The double star $D_{2,2}$, or any subdivision thereof.



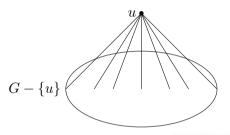
Lemma

- **1)** A copy of K_3 with pendant edges from two vertices;
- **2** C_4 ;
- **3** A copy of C_k with a pendant edge, for any $k \geq 5$;
- 4 The double star $D_{2,2}$, or any subdivision thereof.



Lower Bound Ideas

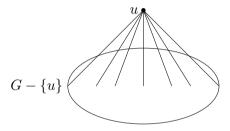
Suppose first we have a universal vertex u.



Look at the components in $G-\{u\}.$

Lower Bound Ideas

Suppose first we have a universal vertex u.

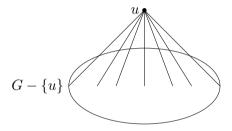


Look at the components in $G-\{u\}$. Go through the options for trees with fewer than 5 edges...

So, if G has a universal vertex, we're pretty much done!

Lower Bound Ideas

Suppose first we have a universal vertex u.



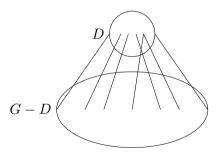
Look at the components in $G-\{u\}$. Go through the options for trees with fewer than 5 edges...

So, if G has a universal vertex, we're pretty much done!

Problem: it is not at all clear that G has a universal vertex.

Dominating Sets

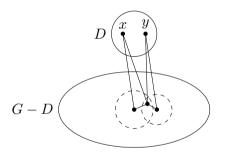
A dominating set in a graph G is a set D of vertices such that every vertex of $V(G) \setminus D$ is adjacent to something in D.



New Idea: A nice dominating set might work sort of like a universal vertex.

Dominating Set Wrinkles

A nice dominating set is harder to work with than a universal vertex:



Problems: too-sparse components in G-D.

A Core Set

If a component ${\cal C}$ of ${\cal G}-{\cal D}$ doesn't contribute the right edge density

A Core Set

If a component C of G-D doesn't contribute the right edge density we find a set $S\subseteq D$ of few (≤ 35) vertices with all too-sparse components intersecting $\bigcup_{v\in S} N(v)$ nicely.

A Core Set

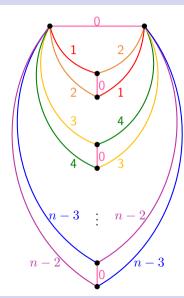
If a component C of G-D doesn't contribute the right edge density we find a set $S\subseteq D$ of few (≤ 35) vertices with all too-sparse components intersecting $\bigcup_{v\in S} N(v)$ nicely.

Longer Cycles

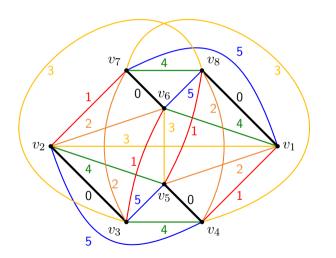
What about cycles on more than 4 edges?

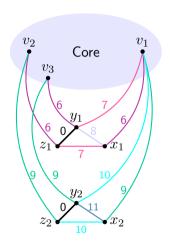
While some ideas from our proof may help, longer cycles seem to behave differently. In particular, the " $u\,+\,$ trees" model is tough to extend.

We do offer a construction giving an upper bound of $\approx \frac{5n}{2}$ for $C_5 \dots$



... and a construction giving $pprox rac{7n}{3}$ for $C_6!$





• Paths. $sat^*(n, P_\ell) = n + O(1)$ (tight up to an additive constant). Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison

- Paths. $sat^*(n, P_\ell) = n + O(1)$ (tight up to an additive constant). Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison
- K₄. Asymptotically determined: $sat^*(n, K_4) = \frac{7}{2}n + o(n)$. Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison

- Paths. $sat^*(n, P_\ell) = n + O(1)$ (tight up to an additive constant). Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison
- K₄. Asymptotically determined: $sat^*(n, K_4) = \frac{7}{2}n + o(n)$. Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison
- **General cycles.** New linear upper bounds for long cycles: for $k \ge 7$,

$$\operatorname{sat}^*(n, C_k) \leq \frac{k-1}{2} n + O(1),$$

and a worse bound for C_8 of 5n-12.

Lane-Morrison

- Paths. $sat^*(n, P_\ell) = n + O(1)$ (tight up to an additive constant). Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison
- K₄. Asymptotically determined: $sat^*(n, K_4) = \frac{7}{2}n + o(n)$. Baker–Gomez-Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison
- **General cycles.** New linear upper bounds for long cycles: for $k \ge 7$,

$$sat^*(n, C_k) \le \frac{k-1}{2} n + O(1),$$

and a worse bound for C_8 of 5n-12.

Lane-Morrison

• Trees. Broad asymptotic results: if $\operatorname{diam}(T) \geq 5$, then $\operatorname{sat}^*(n,T) \geq n-1$ (tight for several infinite families, e.g., brooms), giving $\Theta(n)$ for all connected trees with large diameter.

Lane-Morrison

Cycles: Current Best Bounds Summary

- C_4 . sat* $(n, C_4) = \frac{11}{6}n \pm o(n)$
- C_5 . sat* $(n, C_5) \le \lfloor \frac{5}{2}n \rfloor 4$.
- C_6 . sat* $(n, C_6) \leq \frac{7}{3}n + O(1)$.
- C_k for $k \geq 7$. $\operatorname{sat}^*(n, C_k) \leq \frac{k-1}{2}n + O(1)$; except $\operatorname{sat}^*(n, C_8) \leq 5n 12$.

Open Questions

While we now know many more values of $\operatorname{sat}^*(n,F)$ than we did a year ago, many natural graphs remain unresolved.

• C_ℓ , for $\ell > 4$?

Open Questions

While we now know many more values of $\operatorname{sat}^*(n,F)$ than we did a year ago, many natural graphs remain unresolved.

• C_{ℓ} , for $\ell > 4$?

Some nice general questions are also open:

• Is $sat^*(n, F)$ always larger than sat(n, F)? In all known cases, this is true (and in fact, there is a multiplicative factor of difference between the two).

Thanks for your attention! Questions?