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F -saturated graphs
A graph G is F-saturated if it is:

• F -free (i.e., does not contain F as a subgraph),
• but for any e →

(V (G)
2

)
\ E(G), the graph G + e contains F .

F Not F -Saturated Not F -Saturated F -Saturated

In other words: F -saturated graphs are edge-maximal F -free graphs.

Question: given F and n, how sparse (or dense) can an n-vertex, F -saturated graph be?
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Turán and Saturation Numbers

The Turán number of F is

ex(n, F ) = maximum number of edges in an n-vertex, F -saturated graph.

while the saturation number of F is

sat(n, F ) = minimum number of edges in an n-vertex, F -saturated graph.

Classical problems with very extensive history.
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Rainbow Saturation
An edge-coloring of G is an assignment of colors to edges.

Proper = any two edges that share a vertex get di!erent colors

Rainbow = any two edges get di!erent colors

One appealing variant is to ask Turán or saturation problems in an edge-colored setting.

Definition (Rainbow Saturation Number— Introduced by Barrus, Ferrara,

Vandenbussche, Wenger 2017)
Given an integer t and a graph H. The t-rainbow saturation number is the minimum number

of edges in a t-edge-colored graph G on n vertices such that G does not contain a rainbow

copy of H, but adding to G a new edge in any color creates a rainbow copy of H.

Does not assume a setting of proper edge-colorings.
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Proper Rainbow Saturation Number

Problem: Make properly edge-colored graphs G with no rainbow copy of F . How should
our “edge maximality” condition look?

A graph G is (properly) rainbow F -saturated if
• G has a proper edge-coloring with no rainbow copy of F ;
• If we add any edge e, then G + e cannot be properly edge-colored while avoiding a

rainbow F .

F = P3 Bad Good Good
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Largest Cases

The maximum number of edges in an n-vertex, properly rainbow F -saturated graph is the
rainbow Turán number ex→(n, F ).

Introduced by: Keevash, Mubayi, Sudakov, and Verstraëte 2007

Example:

F = P3 ex→(n, P3) ↑ 3n
2

Comparison: ex(n, P3) ↑ n.
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Smallest Cases

The minimum number of edges in an n-vertex, properly rainbow F -saturated graph is the
(proper) rainbow saturation number sat→(n, F ).

Introduced by: Bushaw, Johnston, and Rombach 2022

Example:

F = P3 sat→(n, P3) ↑ 4n
5

Comparison: sat(n, P3) ↑ n
2 .
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The minimum number of edges in an n-vertex, properly rainbow F -saturated graph is the
(proper) rainbow saturation number sat→(n, F ).

Introduced by: Bushaw, Johnston, and Rombach 2022

Example:

F = P3 sat→(n, P3) ↑ 4n
5

Comparison: sat(n, P3) ↑ n
2 .

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 7 / 21



Known Values of sat↓(n, F )

Finding sat→(n, F ) seems hard for most choices of F . But some exact results are known!

Theorem (Bushaw-Johnston-Rombach, 2022)
For all n,

sat→(n, P3) = 4n

5 + O(1).

Very rough proof idea: disjoint copies of K1,4 gives the upper bound. For the lower bound,
what components of a rainbow saturated graph could be sparser than K1,4?

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 8 / 21



Known Values of sat↓(n, F )

Finding sat→(n, F ) seems hard for most choices of F . But some exact results are known!

Theorem (Bushaw-Johnston-Rombach, 2022)
For all n,

sat→(n, P3) = 4n

5 + O(1).

Very rough proof idea: disjoint copies of K1,4 gives the upper bound. For the lower bound,
what components of a rainbow saturated graph could be sparser than K1,4?

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 8 / 21



Known Values of sat↓(n, F )

Finding sat→(n, F ) seems hard for most choices of F . But some exact results are known!

Theorem (Bushaw-Johnston-Rombach, 2022)
For all n,

sat→(n, P3) = 4n

5 + O(1).

Very rough proof idea: disjoint copies of K1,4 gives the upper bound. For the lower bound,
what components of a rainbow saturated graph could be sparser than K1,4?

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 8 / 21



Known Values of sat↓(n, F )

Theorem (HLM 2025)
For all n,

sat→(n, C4) ↔ 11n

6 + O(1).

Moreover, for any ω > 0, there exists n0 → N such that, if n ↗ n0 and G is an n-vertex,
properly rainbow C4-saturated graph, then G has more than

(
11
6 ↘ ω

)
n edges.

Previously known: Bushaw, Johnston, and Rombach bounded

n ↔ sat→(n, C4) ↔ 2n ↘ 2.
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Determining sat↓(n, C4): A Construction

u

1
2

3 4
5

6

2

3 35 4

To scale up this construction: Take a universal u adjacent to coppies of S2,2,1.

Number of edges: n ↘ 1 edges ending at u. For the rest, sets of 6 vertices yield 5 edges
each. Total is ↑ 11n

6 .
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Properties and Intuition Helping with the Upper-bound Analysis

Lemma

Let G be a graph and v → V (G). If there exists a proper
edge-coloring of G which is rainbow C4-free, then the subgraph of
G induced on N(v) does not contain the following subgraphs:

1 A copy of K3 with pendant edges from two vertices;
2 C4;
3 A copy of Ck with a pendant edge, for any k ↗ 5;
4 The double star D2,2, or any subdivision thereof.

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 11 / 21
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v2 v3

v1 v4
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Lower Bound Ideas
Suppose first we have a universal vertex u.

u

G ↘ {u}

Look at the components in G ↘ {u}. Go through the options for trees with fewer than 5
edges...

So, if G has a universal vertex, we’re pretty much done!

Problem: it is not at all clear that G has a universal vertex.
Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 12 / 21
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Dominating Sets

A dominating set in a graph G is a set D of vertices such that every vertex of V (G) \ D is
adjacent to something in D.

D

G ↘ D

New Idea: A nice dominating set might work sort of like a universal vertex.
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Dominating Set Wrinkles

A nice dominating set is harder to work with than a universal vertex:

D
x y

G ↘ D

Problems: too-sparse components in G ↘ D.
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A Core Set

If a component C of G ↘ D doesn’t contribute the right edge density
we find a set S ≃ D of few (↔ 35) vertices with all too-sparse components intersecting⋃

v↑S N(v) nicely.

↭ Conclusion: constant number of too-sparse components!

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 15 / 21



A Core Set

If a component C of G ↘ D doesn’t contribute the right edge density
we find a set S ≃ D of few (↔ 35) vertices with all too-sparse components intersecting⋃

v↑S N(v) nicely.

↭ Conclusion: constant number of too-sparse components!

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 15 / 21



A Core Set

If a component C of G ↘ D doesn’t contribute the right edge density
we find a set S ≃ D of few (↔ 35) vertices with all too-sparse components intersecting⋃

v↑S N(v) nicely.

↭ Conclusion: constant number of too-sparse components!

Halfpap, Lidick!, TM Proper Rainbow Saturation Numbers for Cycles 15 / 21



Longer Cycles

What about cycles on more than 4 edges?

While some ideas from our proof may help,
longer cycles seem to behave di$erently. In
particular, the “u + trees” model is tough to
extend.

We do o$er a construction giving an upper
bound of ↑ 5n

2 for C5 . . .

0

0

0

0

1 2

2 1

3 4

4 3

n ↘ 3 n ↘ 2

n ↘ 2 n ↘ 3

...
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. . . and a construction giving ↑ 7n
3 for C6!

1

2

4

0

0

4

2

15 0

0 5

5

5

2

2

3

4

3

3 3

1

1

4

v7 v8

v6

v2 v1

v5

v4v3

Core

6
76

6 8
7

0

9 109
9

11

10

0

v2 v1

v3

x1

y1

z1

x2

y2

z2
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Follow-up Developement Appearing in 2024
• Paths. sat→(n, Pω) = n + O(1) (tight up to an additive constant).

Baker–Gomez-Leos–Halfpap–Heath–Martin–-

Miller–Parker–Pungello–Schwieder–Veldt & Lane–Morrison

• K4. Asymptotically determined: sat→(n, K4) = 7
2n + o(n). Baker–Gomez-

Leos–Halfpap–Heath–Martin–Miller–Parker–Pungello–Schwieder–Veldt &

Lane–Morrison

• General cycles. New linear upper bounds for long cycles: for k ↗ 7,

sat→(n, Ck) ↔ k ↘ 1
2 n + O(1),

and a worse bound for C8 of 5n ↘ 12.
Lane–Morrison

• Trees. Broad asymptotic results: if diam(T ) ↗ 5, then sat→(n, T ) ↗ n ↘ 1 (tight for
several infinite families, e.g., brooms), giving !(n) for all connected trees with large
diameter.
Lane–Morrison
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Cycles: Current Best Bounds Summary

• C4. sat→(n, C4) = 11
6 n ± o(n)

• C5. sat→(n, C5) ↔ ⇐5
2n⇒ ↘ 4.

• C6. sat→(n, C6) ↔ 7
3n + O(1).

• Ck for k ↗ 7. sat→(n, Ck) ↔ k↓1
2 n + O(1); except sat→(n, C8) ↔ 5n ↘ 12.
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Open Questions

While we now know many more values of sat→(n, F ) than we did a year ago, many natural
graphs remain unresolved.

• Cω, for ε > 4?

Some nice general questions are also open:
• Is sat→(n, F ) always larger than sat(n, F )? In all known cases, this is true (and in fact,

there is a multiplicative factor of di$erence between the two).
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Thanks for your attention!
Questions?
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