Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic

Jesse Campion Loth, Kevin Halasz, Tomáš Masařík, Bojan Mohar, Robert Šámal

University of Warsaw, Poland

Symposium on Discrete Algorithms (SODA) 2024 Alexanria, Virginia, US

Combinatorial Embedding

Combinatorial maps

- a triple $\boldsymbol{M} = (\boldsymbol{D},\boldsymbol{R},\boldsymbol{L})$ where
 - D is an abstract set of darts;
 - R is a unicyclic permutation on D;
 - L is a fixed point free involution on D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented surfaces (up to orientation-preserving homeomorphisms).

Combinatorial Embedding

Combinatorial maps

- a triple $\boldsymbol{M} = (\boldsymbol{D},\boldsymbol{R},\boldsymbol{L})$ where
 - D is an abstract set of darts;
 - *R* is a unicyclic permutations on *D*;
 - L is a fixed point free involution on D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented surfaces (up to orientation-preserving homeomorphisms).

Related results

Complete Graph K_n

The expected number of faces in a random embedding of the complete graph K_n is at most:

- Stahl 1995
- Conjecture Mauk and Stahl 1996

General Graphs

The expected number of faces in a random embedding of any graph is at most:

- Stahl 1991
 - Campion Loth and Mohar 2023

 $n + \ln n$

 $n \ln n$ $\frac{\pi^2}{2}n$

 $2\ln n + O(1)$

Our Results—Comple Graphs

Complete Graph K_n

The expected number of faces in a random embedding of the complete graph K_n is:

- Stahl 1995
- Conjecture Mauk and Stahl 1996
- CHMMŠ 2024

 $\leq n + \ln n$ $\leq 2 \ln n + O(1)$ $\leq H_{n-3}H_{n-2}$ $\leq 10 \ln n + 2$ (n large enough) $\leq 3.65 \ln n$

 $\geq 0.5 \ln n - 2$

Hn = 27

General Graphs

The expected number of faces in a random embedding of any graph is \leq

- Stahl 1991
- Campion Loth and Mohar 2023

Theorem (Random Graphs)

Let $n \in \mathbb{N}$ and $p \in (0,1]$ (p = p(n)). Then the number of faces in a random embedding of a random graph in G(n,p) is $\leq H_n^2 + 1/p$.

Theorem (Random Multigraphs)

Let $\mathbf{d} = (t_1, t_2, \dots, t_n)$ be a degree sequence for an *n*-vertex multigraph (possibly with loops) where $t_i \geq 2$ for all *i*. Let $\mathbb{E}[F_{\mathbf{d}}]$ be the average number of faces in a random embedding of a random multigraph with degree sequence \mathbf{d} . Then $\mathbb{E}[F_{\mathbf{d}}] = \Theta(\ln n)$.

 $\frac{n\ln n}{\frac{\pi^2}{c}n}$

Theorem (Random Multigraphs)

Let $\mathbf{d} = (t_1, t_2, \dots, t_n)$ be a degree sequence for an *n*-vertex multigraph (possibly with loops) where $t_i \geq 2$ for all *i*. Let $\mathbb{E}[F_{\mathbf{d}}]$ be the average number of faces in a random embedding of a random multigraph with degree sequence \mathbf{d} . Then $\mathbb{E}[F_{\mathbf{d}}] = \Theta(\ln n)$.

Theorem (Random Graphs of Bounded degree)

Let $d \ge 2$ be a constant, $\varepsilon > 0$, and let $\mathbf{d} = (t_1, t_2, \dots, t_n)$ be a degree sequence for some *n*-vertex simple graph with $2 \le t_i \le d$ for all *i*, and such that $m_{\mathbf{d}} \ge (1 + \varepsilon)n$. Let $\mathbb{E}[F_{\mathbf{d}}^s]$ be the average number of faces in a random embedding of a random simple graph with degree sequence \mathbf{d} . Then $\mathbb{E}[F_{\mathbf{d}}^s] = \Theta_{\varepsilon,d}(\ln n)$ (constants within Θ depend on ε and *d*).

Theorem (Random Multigraphs)

Let $\mathbf{d} = (t_1, t_2, \dots, t_n)$ be a degree sequence for an *n*-vertex multigraph (possibly with loops) where $t_i \geq 2$ for all *i*. Let $\mathbb{E}[F_{\mathbf{d}}]$ be the average number of faces in a random embedding of a random multigraph with degree sequence \mathbf{d} . Then $\mathbb{E}[F_{\mathbf{d}}] = \Theta(\ln n)$.

Corollary (Random Multigraphs)

Let G be a random multigraph with degree sequence d. Then the probability that the number of faces in a random embedding of G is $\geq c(\log(n) + 1)$ is $\leq \frac{4}{c}$.

Complete Graph K_n

The expected number of faces in a random embedding of the complete graph K_n is: $\leq H_{n-3}H_{n-2}$.

- Process the vertices v_n, \ldots, v_1 in order.
- Start with v_n and v_{n-1} .

N. K. Kur-1

Complete Graph K_n

The expected number of faces in a random embedding of the complete graph K_n is: $\leq H_{n-3}H_{n-2}$.

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order.

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.

The Expected Number of Faces is Mostly Logarithmic

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$. If $k \ge 1$, give d_1 the label u, remove one copy of u from C_k , and proceed processing d_2 . If k = 1, start by processing d_1 .

$$d_{7} = \{n, n-1, n-2, n-3, p_{1}, v_{1}\}$$

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .

 $C_{R} := \{n, n-1, n-2, n-3, p_{1}, v_{1}, v_{3}\}$

The Expected Number of Faces is Mostly Logarithmic

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.

No Face is Finished

 $C_{R} := \{n, n-1, n-2, n-3, v, v, v\}$

The Expected Number of Faces is Mostly Logarithmic

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: "6 ¹" Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
 - Case 2: The choice was some $i \ge k + 1$. Random choice 1b: Then pick an unpaired dart d' uniformly at random from those at v_i . Then add the transposition (d', d_ℓ) to the permutation L.

$$C_{R} := \{ X_{1} n - 1_{1} n - 2_{1} n - 3_{1} X_{1} V_{1} U \}$$

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: 6 Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
 - Case 2: The choice was some $i \ge k + 1$. Random choice 1b: Then pick an unpaired dart d' uniformly at random from those at v_i . Then add the transposition (d', d_ℓ) to the permutation L.

$$C_{R} := \{ X_{1} n - 1_{1} n - 2_{1} n - 3_{1} X_{1} V_{1} V_{3} \}$$

d u

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: 6 Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
 - Case 2: The choice was some $i \ge k + 1$. Random choice 1b: Then pick an unpaired dart d' uniformly at random from those at v_i . Then add the transposition (d', d_ℓ) to the permutation L.

We didn't finish a face but we could.

$$C_{R} := \{ X_{1} n - 1_{1} n - 2_{1} n - 3_{1} X_{1} V_{2} \}$$

- Process the vertices v_n, \ldots, v_1 in order.
- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: 6 Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
 - Case 2: The choice was some $i \ge k + 1$. Random choice 1b: Then pick an unpaired dart d' uniformly at random from those at v_i . Then add the transposition (d', d_ℓ) to the permutation L.

For example nove. But at most one choice can do it.

 $C_{R} := \{ N, n-1, n, 2, n-3, 0, 1, 0 \}$

• Process the vertices v_n, \ldots, v_1 in order.

E[F]=E[F]+2

- Consider vertex v_k for $k \in [n-2]$. Label the darts of D_k as $\{d_1, \ldots, d_{n-1}\}$ arbitrarily. We define R_k as this cyclic order. Let $C_k := \{n, n-1, \ldots, k+1, u, u, \ldots, u\}$
 - Process darts in D_k in order $d_1, d_2, \ldots, d_{n-1}$.
 - Consider the dart d_{ℓ} . Random choice 1a: "6 ^(*) Pick a symbol from the set C_k uniformly at random, then remove this choice from C_k .
 - Case 1: The choice was some u. Then leave dart d_ℓ unpaired.

The previous dart is paired.

 $\frac{1}{h(n-e)} \leq H_{n-3}H_{n-2}$

• Case 2: The choice was some $i \ge k + 1$. Random choice 1b: Then pick an unpaired dart d' uniformly at random from those at v_i . Then add the transposition (d', d_ℓ) to the permutation L. The probability is:

 $C_{R} := \{ X, n-1, n, Z, n-3, X, U \}$

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,

- More complicated random process (crafting both R and L),
- 1-open faces complication,
- Complicated analysis of the derived expression,
- Computer assisted evaluation for small *n*.

Campion Loth, Halasz, Masařík, Mohar, Šámal

- More complicated random process (crafting both R and L),
- 1-open faces complication,
- Complicated analysis of the derived expression,
- Computer assisted evaluation for small *n*.

Open Problems

Conjecture (Mauk and Stahl 1996)

The expected number of faces in a random embedding of the complete graph K_n is $2 \ln n + O(1)$.

Conjecture

The expected number of faces in a random embedding of a random graph $G \in G(n, M)$ is $(1 + o(1)) \ln(M)$.

Conjecture

Let G be a graph on n vertices with minimum vertex degree $\Omega(n)$. Then G satisfies $\mathbb{E}[F] = \Theta(\ln(n))$.

Conjecture

The expected number of faces in a **non-orientable** random embedding of the **complete** graph K_n is at most $\ln(n) + O(1)$.

Conjecture

The expected number of faces in a random embedding of a random graph $G \in G(n, M)$ is $(1 + o(1)) \ln(M)$.

Conjecture

Let G be a graph on n vertices with minimum vertex degree $\Omega(n)$. Then G satisfies $\mathbb{E}[F] = \Theta(\ln(n))$.

Conjecture

The expected number of faces in a **non-orientable** random embedding of the **complete** graph K_n is at most $\ln(n) + O(1)$.

Thank you!