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Combinatorial Embedding

Combinatorial maps
a triple M = (D, R, L) where
® D is an abstract set of darts;
® R is a unicyclic permutationson D;

® [ is a fixed point free involution on D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented
surfaces (up to orientation-preserving homeomorphisms).
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a triple M = (D, R, L) where
® D is an abstract set of :

® Risa on D:;

® [ is a fixed point free on D.

Combinatorial maps are in bijective correspondence with
surfaces (up to orientation-preserving homeomorphisms).

Face; Rol

Note that # Faes defemmines the genys by Edess Formia.
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Related results

Complete Graph K,

The expected number of faces in a random embedding of the complete graph K, is at most:

e Stahl 1995
® Conjecture Mauk and Stahl 1996

General Graphs

The expected number of faces in a random embedding of any graph is at most:

e Stahl 1991
® Campion Loth and Mohar 2023
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Our Results—Comple Graphs

Complete Graph K, Hn:.—é{f
The expected number of faces in a random embedding of the complete graph K, is:

e Stahl 1995 <n-+Inn

® Conjecture Mauk and Stahl 1996 <2Inn+0O(1)

. <H, 3H, 3

<10lnn+2

(n large enough) < 3.651nn

>05Inn — 2)
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Our Results—Random Graphs

General Graphs

The expected number of faces in a random embedding of any graph is <

® Stahl 1991

nlnn

® Campion Loth and Mohar 2023 n

Theorem (Random Graphs)

Let n € N and p € (0,1] (p =p(n)). Then the number of faces in a random embedding of a
random graph in G(n,p) is < H2 +1/p.

Theorem (Random Multigraphs)

Letd = (t1,to, ..

.,tn) be a degree sequence for an n-vertex multigraph (possibly with loops)

where t; > 2 for all i. Let E[Fy4] be the average number of faces in a random embedding of a
random multigraph with degree sequence d. Then E[F4] = O(Inn).
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Our Results—Random Graphs

Theorem (Random Multigraphs)

Let d = (ty,t2,...,t,) be a degree sequence for an n-vertex multigraph (possibly with loops)
where t; > 2 for all i. Let E[Fg] be the average number of faces in a random embedding of a
. Then E[Fy] = O(Inn).

Theorem (Random Graphs of Bounded degree)

Let d > 2 be a constant, ¢ > 0, and let d = (t1,t2,...,t,) be a degree sequence for some
n-vertex graph with for all i, and such that mq > (14 ¢)n. Let E[Fj] be
the average number of faces in a random embedding of a random simple graph with degree
sequence d. Then E[F3j] = O. 4(Inn) (constants within © depend on ¢ and d).

Campion Loth, Halasz, Masafik, Mohar, Samal The Expected Number of Faces is Mostly Logarithmic 5/8




Our Results—Random Graphs

Theorem (Random Multigraphs)

Let d = (ty,t2,...,t,) be a degree sequence for an n-vertex multigraph (possibly with loops)

where t; > 2 for all i. Let E[Fg] be the average number of faces in a random embedding of a
. Then E[Fy] = O(Inn).

Corollary (Random Multigraphs)

Let G be a with degree sequence d. Then the probability that the
number of faces in a random embedding of G is > c(log(n) + 1) is < j—l
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In?n for K, proof—The Random Process

Complete Graph K,

The expected number of faces in a random embedding of the complete graph K, is:
< Hn73an2-

® Process the vertices vy, ...,v; in order.
e Start with v, and v,_1. Un i’ \/ﬁ;_f
® ©° o o o ®
v;”L 1&«3 v,._
{ -~
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In?n for K, proof—The Random Process

Complete Graph K,
The expected number of faces in a random embedding of the complete graph K, is:

S anSanQ-

® Process the vertices vy, ..., vy in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d1,...,d,—1} arbitrarily.
We define Ry, as this cyclic order.

R
&
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In?n for K, proof—The Random Process

® Process the vertices vy, ..., v in order.
e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily.
We define Ry, as this cyclic order.
Let Cy :i={n,n—1,...;k+ 1L u,u,...,u}
® Process darts in Dy in order dq,do,...,d,_1.

Cy= (om0 13,0403
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily.
We define Ry, as this cyclic order.
Let Cy :i={n,n—1,...;k+ 1L u,u,...,u}
® Process darts in Dy in order dq,do,...,d,_1.
If &> 1, give d; the label u, remove one copy of u from C%, and proceed processing ds.
If £ =1, start by processing d.

Cyi= K2 M
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In?n for K, proof—The Random Process

® Process the vertices vy, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily.
We define Ry, as this cyclic order.
Let Cy :i={n,n—1,...;k+ 1L u,u,...,u}
® Process darts in Dy in order dq,ds,...,d,_1.
® Consider the dart d,. [Random choice 1a:|
Pick a symbol from the set Cj, uniformly at random, then remove this choice from C}.

6&,: (n/n-1l/7'2,/ﬁ“3/%U,U/‘g
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In?n for K, proof—The Random Process

® Process the vertices vy, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily.
We define Ry, as this cyclic order.
Let Cy :i={n,n—1,...;k+ 1L u,u,...,u}
® Process darts in Dy in order dq,do,...,d,_1.

® Consider the dart dy.
Pick a symbol from the set C}, uniformly at random, then remove this choice from Cj.

® (Case 1: The choice was some u. Then leave dart d; unpaired.

/VO Facz,(g Fma;/\@l

d, \dr-

Cy= {npn-10-2 13 iy v 5
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.

e Consider vertex vy, for k € [n — 2].

Label the darts of Dy, as {d,...,d,_1} arbitrarily. o dq

We define Ry, as this cyclic order.

Let Cy :i={n,n—1,...;k+ 1L u,u,...,u} d;
® Process darts in Dy in order dq,do,...,d,_1.
® Consider the dart dy.

Pick a symbol from the set C}, uniformly at random, then remove this choice from Cj.

® (Case 1: The choice was some u. Then leave dart d; unpaired.
® (Case 2: The choice was some i > k + 1. Then pick an unpaired dart d’
uniformly at random from those at v;. T'hen add the transposition (d’, d,) to the permutation

L.
(g (A(/n-yma,n«s/)@(u/?
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily. o
We define Ry, as this cyclic order.

Let Cy :i={n,n—1,...;k+ 1L u,u,...,u} dz
® Process darts in Dy in order dq,do,...,d,_1.
® Consider the dart dy.
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily. o
We define Ry, as this cyclic order.

Let Cy :i={n,n—1,...;k+ 1L u,u,...,u} dz
® Process darts in Dy in order dq,do,...,d,_1.
® Consider the dart dy.

Pick a symbol from the set C}, uniformly at random, then remove this choice from Cj.

® (Case 1: The choice was some u. Then leave dart dy unpaired.
® (Case 2: The choice was some i > k + 1. |Random choice 1b:| Then pick an unpaired dart d’

uniformly at random from those at v;. Then add the transposition (d', d¢) to the permutation

L
(g (A(/n-yma,n«s/)@(u/?

W& a/u!n'm‘ finch a Face but we. covld.
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.

e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily. o
We define Ry, as this cyclic order

Let Cy :={n,n—1,...,k+1Luu,...,
® Process darts in Dy in order dq,do, ...,

® Consider the dart dy.
Pick a symbol from the set C}, uniformly at random, then remove this choice from Cj.

® (Case 1: The choice was some u. Then leave dart dy unpaired.
® (Case 2: The choice was some i > k + 1. |Random choice 1b:| Then pick an unpaired dart d’

uniformly at random from those at v;. Then add the transposition (d', d¢) to the permutation

Gp= W ”%“W/}

For example nowr. Byt at most one choe. cano(odf
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In?n for K, proof—The Random Process

® Process the vertices v, ..., v in order.
e Consider vertex vy, for k € [n — 2].
Label the darts of Dy, as {d,...,d,_1} arbitrarily. o
We define Ry, as th|s cyclic order
Let Cy :={n,n — Sk+1Luu,. . ul
® Process darts in Dk in order dl,dg, RN

® Consider the dart d,. Random choice 1a:
Pick a symbol from the set C}, uniformly at random, then remove this choice from Cj.
® (Case 1: The choice was some u. Then leave dart d, unpaired.
® Case 2: The choice was some i > k + 1. [Raiidém choice 16: Then pick an unpaired dart d’'
uniformly at random from those at v;. Then add the transposition (d', d¢) to the permutation

"o ,ms;»,u,u
([PRees £ A cl e W
el 273
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L), J

® 1-open faces complication,

Derwn; For Rondon Q’*‘bauly: ’/)FIX R &M[ /@w%e, all L<the ln®n proop
YFm L ord poersie RE degree sepvence rondongy
3)potvede sl Land RE In 1) proor
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Inn Theorem Main Obstacles

® More complicated random process (crafting both 1 and L),

® 1-open faces complication,

Dpﬁon; For R&nc{(?m ley: ’/)FIX R &M[ Ma%e, a// Lé"f'/\e,[nznmmf
YFmx L ord poersie RE degree sepvence rondongy
3)potvede sl Land RE In 1) proor

Sort darls svoynd 7
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L), J

® 1-open faces complication,

Derwn; For Ramalom ley: ’/)FIX R &M[ /@/m%e, a// Lé"f'/\e,[nznmmf
YFm L ord poersie RE degree sepvence rondongy
3)potvede sl Land RE In 1) proor

.
Sor 0{14’7/'5 Jfa/m{ ’D’L/' Bair darfsveth J"wftofon~~%4
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L),
® 1-open faces complication, J

Dp‘l‘tor\s For kg,,,lo,,\ Qﬁ‘bﬁ#ly: 1) Fix R &M[ /@/WWL@ a// Léﬁﬁ,lhfr pProof
YFm L ord poersie RE degree sepvence rondongy
3)potvede sl Land RE In 1) proor

Sort o{zmts Iroynd 7
d‘ej?}’mm [&}L Foy

efine. 13 (dy) %

| Fair dertsveith drtsot v, ~,q
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L),
® 1-open faces complication, J

Two chowes
1166(6 ) = (1 7

Ci’)n»p@{‘e/ & fa,c@
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L),

® 1-open faces complication,

® Complicated analysis of the derived expression,

® Computer assisted evaluation for small n.

35
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= our bound
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Inn Theorem Main Obstacles

® More complicated random process (crafting both R and L),
® 1-open faces complication,
® Complicated analysis of the derived expression,

® Computer assisted evaluation for small n.

60
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Open Problems
Conjecture (Mauk and Stahl 1996)

The expected number of faces in a random embedding of the complete graph K,, is
2lnn + O(1).

Conjecture

The expected number of faces in a random embedding of a
(I1+0(1))In(M).

Conjecture

Let G be a graph on n vertices with . Then G satisfies
E[F] = ©(In(n)).

Conjecture

The expected number of faces in a random embedding of the

K, is at most In(n) + O(1).
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Open Problems

Conjecture

The expected number of faces in a random embedding of a random graph G < G(n, M) is
(1+0(1))In(M).

Conjecture

Let G be a graph on n vertices with minimum vertex degree ()(n). Then G satisfies
E[F] = ©(In(n)).

Conjecture

The expected number of faces in a non-orientable random embedding of the complete
graph K, is at most In(n) + O(1).

Thank you!
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