Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic

Jesse Campion Loth, Kevin Halasz, Tomáš Masařík, Bojan Mohar, Robert Šámal

University of Warsaw, Poland

Symposium on Discrete Algorithms (SODA) 2024
Alexanria, Virginia, US

Combinatorial Embedding

Combinatorial maps
a triple $M=(D, R, L)$ where

- D is an abstract set of darts;
- R is a allacton of of clic permutationson D;
- L is a fixed point free involution on D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented surfaces (up to orientation-preserving homeomorphisms).

Combinatorial Embedding

Combinatorial maps
a triple $M=(D, R, L)$ where

- D is an abstract set of darts;
- R is a unicyclic permutationson D;
- L is a fixed point free involution on D.

Combinatorial maps are in bijective correspondence with 2-cell embeddings of graphs on oriented surfaces (up to orientation-preserving homeomorphisms).

Note that\#Fares determines the genus by Eulers formula.

Related results

Complete Graph K_{n}

The expected number of faces in a random embedding of the complete graph K_{n} is at most:

- Stahl 1995
$n+\ln n$
- Conjecture Mauk and Stahl 1996

General Graphs

The expected number of faces in a random embedding of any graph is at most:

- Stahl 1991
- Campion Loth and Mohar 2023

Our Results-Comple Graphs

Complete Graph $K_{n} \quad H_{n}:=\sum_{i=1}^{n} \frac{1}{i}$
The expected number of faces in a random embedding of the complete graph K_{n} is:

- Stahl 1995
- Conjecture Mauk and Stahl 1996
- CHMMŠ 2024

$$
\begin{array}{r}
\leq n+\ln n \\
\leq 2 \ln n+O(1) \\
\leq H_{n-3} H_{n-2} \\
\leq 10 \ln n+2 \\
(n \text { large enough }) \leq 3.65 \ln n \\
\geq 0.5 \ln n-2
\end{array}
$$

Our Results—Random Graphs

General Graphs

The expected number of faces in a random embedding of any graph is \leq

- Stahl 1991
- Campion Loth and Mohar 2023

Theorem (Random Graphs)

Let $n \in \mathbb{N}$ and $p \in(0,1](p=p(n))$. Then the number of faces in a random embedding of a random graph in $G(n, p)$ is $\leq H_{n}^{2}+1 / p$.

Theorem (Random Multigraphs)
Let $\mathbf{d}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a degree sequence for an n-vertex multigraph (possibly with loops) where $t_{i} \geq 2$ for all i. Let $\mathbb{E}\left[F_{\mathbf{d}}\right]$ be the average number of faces in a random embedding of a random multigraph with degree sequence d. Then $\mathbb{E}\left[F_{\mathbf{d}}\right]=\Theta(\ln n)$.

Our Results—Random Graphs

Theorem (Random Multigraphs)

Let $\mathbf{d}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a degree sequence for an n-vertex multigraph (possibly with loops) where $t_{i} \geq 2$ for all i. Let $\mathbb{E}\left[F_{\mathbf{d}}\right]$ be the average number of faces in a random embedding of a random multigraph with degree sequence d. Then $\mathbb{E}\left[F_{\mathbf{d}}\right]=\Theta(\ln n)$.

Theorem (Random Graphs of Bounded degree)

Let $d \geq 2$ be a constant, $\varepsilon>0$, and let $\mathbf{d}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a degree sequence for some n-vertex simple graph with $2 \leq t_{i} \leq d$ for all i, and such that $m_{\mathbf{d}} \geq(1+\varepsilon) n$. Let $\mathbb{E}\left[F_{\mathbf{d}}^{s}\right]$ be the average number of faces in a random embedding of a random simple graph with degree sequence d. Then $\mathbb{E}\left[F_{\mathrm{d}}^{s}\right]=\Theta_{\varepsilon, d}(\ln n)$ (constants within Θ depend on ε and d).

Our Results—Random Graphs

Theorem (Random Multigraphs)

Let $\mathbf{d}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a degree sequence for an n-vertex multigraph (possibly with loops) where $t_{i} \geq 2$ for all i. Let $\mathbb{E}\left[F_{\mathbf{d}}\right]$ be the average number of faces in a random embedding of a random multigraph with degree sequence d . Then $\mathbb{E}\left[F_{\mathbf{d}}\right]=\Theta(\ln n)$.

Corollary (Random Multigraphs)

Let G be a random multigraph with degree sequence \mathbf{d}. Then the probability that the number of faces in a random embedding of G is $\geq c(\log (n)+1)$ is $\leq \frac{4}{c}$.

$\ln ^{2} n$ for K_{n} proof-The Random Process

Complete Graph K_{n}

The expected number of faces in a random embedding of the complete graph K_{n} is: $\leq H_{n-3} H_{n-2}$.

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Start with v_{n} and v_{n-1}.

$\ln ^{2} n$ for K_{n} proof-The Random Process

Complete Graph K_{n}

The expected number of faces in a random embedding of the complete graph K_{n} is:
$\leq H_{n-3} H_{n-2}$.

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily. We define R_{k} as this cyclic order.

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily. We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.

$$
C_{\ell}:=\{n, n-1, n-2, n-3, v, v, v\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
 If $k>1$, give d_{1} the label u, remove one copy of u from C_{k}, and proceed processing d_{2}. If $k=1$, start by processing d_{1}.

$$
C_{l}:=\{n, n-1, n-2, n-3,\{, 0, v, v\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice 1a:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

$$
C_{\ell}:=\left\{n, n-1, n-2, n-3, \beta_{1}, v, v\right\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice 1a:
 Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.
- Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
No Face is Finished

$$
C_{\ell}:=\{n, n-1, n-2, n-3, k, k, v, v\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice la:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

- Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
- Case 2: The choice was some $i \geq k+1$. Random choice lb: Then pick an unpaired dart d^{\prime} uniformly at random from those at v_{i}. Then add the transposition $\left(d^{\prime}, d_{\ell}\right)$ to the permutation L.

$$
C_{h}:=\left\{K_{1}, n-1, n-2, n-3, k, x, v\right\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice 1a:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

- Case 1: The choice was some u. Then leave dart d_{ρ} unpaired.
- Case 2: The choice was some $i \geq k+1$. Random choice 1b: Then pick an unpaired dart d^{\prime} uniformly at random from those at v_{i}. Then add the transposition $\left(d^{\prime}, d_{\ell}\right)$ to the permutation L.

$$
C_{\ell}:=\{\mid, n, n-1, n-2, n-3, k, k, v\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice la:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

- Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
- Case 2: The choice was some $i \geq k+1$. Random choice lb: Then pick an unpaired dart d^{\prime} uniformly at random from those at v_{i}. Then add the transposition $\left(d^{\prime}, d_{\ell}\right)$ to the permutation L.
We didn't finish a face but we could.

$$
C_{R}:=\left\{k_{1}, n-1, n-2, n-3, k, k, v\right\}
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice la:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

- Case 1: The choice was some u. Then leave dart d_{ρ} unpaired.
- Case 2: The choice was some $i \geq k+1$. Random choice ib: Then pick an unpaired dart d^{\prime} uniformly at random from those at v_{i}. Then add the transposition $\left(d^{\prime}, d_{\ell}\right)$ to the permutation L.
For example now. But at most one chore candort.

$$
C_{R}:=\left\{\left\langle, n-1, n \chi_{1}, n-3, k, x_{1}, v\right\}\right.
$$

$\ln ^{2} n$ for K_{n} proof-The Random Process

- Process the vertices v_{n}, \ldots, v_{1} in order.
- Consider vertex v_{k} for $k \in[n-2]$.

Label the darts of D_{k} as $\left\{d_{1}, \ldots, d_{n-1}\right\}$ arbitrarily.
We define R_{k} as this cyclic order.
Let $C_{k}:=\{n, n-1, \ldots, k+1, u, u, \ldots, u\}$

- Process darts in D_{k} in order $d_{1}, d_{2}, \ldots, d_{n-1}$.
- Consider the dart d_{ℓ}. Random choice la:

Pick a symbol from the set C_{k} uniformly at random, then remove this choice from C_{k}.

- Case 1: The choice was some u. Then leave dart d_{ℓ} unpaired.
- Case 2: The choice was some $i \geq k+1$. Random choice lb: Then pick an unpaired dart d^{\prime} uniformly at random from those at v_{i}. Then add the transposition $\left(d^{\prime}, d_{\ell}\right)$ to the permutation L.

The probability is:

$$
C_{R}:=\left\{k_{1} n-1, n k<, n-3, k, x_{1}, u\right\}
$$

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

Options for Random embedaliny: 1) Fix R and generate all $L<$ the $\ln ^{2}$ n proof 2) $F i x L$ and geverste $R K$ degree sequence randongr 3) generate all L and $R K \ln n$ proof.
$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

Options for Random embedding: 1) Fix R and generate all $L \leftarrow$ the lin proof
2) $F I x L$ and generate $R<$ degree sequence rundongy 3) generate all L and $R K \ln n$ proof .

Sort darts around π_{k}

Campion Loth, Halasz, Masařík, Mohar, Šámal The Expected Number of Faces is Mostly Logarithmic
$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

Options for Random embedding: 1) FIX R and generate all $L \leqslant$ the lin np root
2) F Ix L and generate $R<$ degree sequence ruatongy 3) generate all L and $R K \ln n$ proof

Sort darts around σ_{k}; Pair darts with dato of vo r - v_{t+1}

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

Options for Random embedding: 1) FIX R and generate all $L \leqslant$ the lin proof
2) F Ix L and generate $R<$ degree sequence ruatongy 3) generate all L and $R K \ln n$ proof.
 determine R_{h} For ${ }^{\text {de }}$ define $R_{R}(d e)$

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

$\ln n$ Theorem Main Obstacles
- More complicated random process (crafting both R and L),
- 1-open faces complication,

Two choices

$$
\begin{aligned}
& R\left(d_{6}\right)=d_{7} \\
& R\left(d_{6}\right)=d_{8} \text { and } R\left(d_{8}\right)=d_{7}
\end{aligned}
$$

Complete a

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,

Two choices

$$
\begin{aligned}
& R\left(d_{6}\right)=d_{7} \\
& R\left(d_{6}\right)=d_{8} \text { and } R\left(d_{8}\right)=d_{7}
\end{aligned}
$$

Complete a

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,
- Complicated analysis of the derived expression,
- Computer assisted evaluation for small n.

$\ln n$ Theorem Main Obstacles

- More complicated random process (crafting both R and L),
- 1-open faces complication,
- Complicated analysis of the derived expression,
- Computer assisted evaluation for small n.

Open Problems

Conjecture (Mauk and Stahl 1996)

The expected number of faces in a random embedding of the complete graph K_{n} is $2 \ln n+O(1)$.

Conjecture

The expected number of faces in a random embedding of a random graph $G \in G(n, M)$ is $(1+o(1)) \ln (M)$.

Conjecture

Let G be a graph on n vertices with minimum vertex degree $\Omega(n)$. Then G satisfies $\mathbb{E}[F]=\Theta(\ln (n))$.

Conjecture

The expected number of faces in a non-orientable random embedding of the complete graph K_{n} is at most $\ln (n)+O(1)$.

Open Problems

Conjecture

The expected number of faces in a random embedding of a random graph $G \in G(n, M)$ is $(1+o(1)) \ln (M)$.

Conjecture

Let G be a graph on n vertices with minimum vertex degree $\Omega(n)$. Then G satisfies $\mathbb{E}[F]=\Theta(\ln (n))$.

Conjecture

The expected number of faces in a non-orientable random embedding of the complete graph K_{n} is at most $\ln (n)+O(1)$.

Thank you!

