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Steiner Tree

Steiner Tree
Input: A graph G = (V,E), a set of terminals R ⊆ V .
Task: Find a tree T ⊆ E of smallest size such that (R, T ) is con-
nected.

A vertex in V \R is called a Steiner vertex.
The number of Steiner vertices in the optimal solution is denoted by p,
(i.e. |V (T ∗) \R| for the optimum T ∗).
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Steiner Tree

Weighted Steiner Tree
Input: A graph G = (V,E), a set of terminals R ⊆ V , and a weight
function w : E → R+.
Task: Find a tree T ⊆ E of smallest weight such that (R, T ) is
connected.

Directed Steiner Tree
Input: A directed graph G = (V,A), a set of terminals R ⊆ V , a root
r ∈ R.
Task: Find an arborescence T ⊆ A of smallest size such that every
terminal is reachable from r by edges in T .
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Steiner Tree and Parameters

Two natural parameters of the problem.
• the number of terminals (denoted by |R|),
• the number of Steiner vertices in the optimal solution (denoted
by p) i.e. |V (T ∗) \R|.

Note, that if the number of Steiner vertices is considered as a parameter
instead there is a trivial FPT algorithm.
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Steiner Tree – Known Results
Parameterized complexity:

• FPT w.r.t. number of terminals
• 3kn3 algorithm in the 70s [Dreyfus & Wagner 71],
• the best known now is 2kn2 [Björklund et al. 07] for the unweighted

case.

• W[1]-hard w.r.t. p

Approximation:
• 2-approximation is simple
• (ln 4 + ε)-approximation algorithm [Byrka et al. 13]
• (96/95)-approximation is NP-hard (which means no approximation
scheme exists unless P = NP) [Chlebík and Chlebíková 02]

Since Steiner Tree is both hard to approximate and W[1]-hard w.r.t. p,
it is an excellent target for parameterized approximation.
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Steiner Tree – Our Results

Theorem

For any computable functions g, f , it is impossible to compute an
f(p)-approximation for the Weighted Directed Steiner Tree problem
parameterized by p in time g(p) · nO(1), unless W[1] = FPT.

Results

Unweighted

Weighted

Undirected Directed

f(p)-approx. hard
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Steiner Tree – Our Results

Definition (EPAS)
Efficient Parameterized Approximation Scheme for minimization
problem is defined as follows: For all ε > 0 there exists an algorithm
that runs in time f(ε, p) · nO(1) and returns (1 + ε)-approximation.
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Steiner Tree – Our Results

Theorem

There is an EPAS for the Unweighted Directed Steiner Tree problem

in time 2p2/ε · nO(1).

Results

Unweighted

Weighted

Undirected Directed

f(p)-approx. hard

EPAS

Dvořák, Feldmann, Knop, TM, Toufar, Veselý EPAS for Steiner Trees



Intro EPAS algorithm PSAKS Conclusions

Steiner Tree – Our Results

Theorem

There is an EPAS for the Weighted Undirected Steiner Tree problem

in time 2O(p2/ε4) · nO(1).

Results

Unweighted

Weighted

Undirected Directed

EPAS f(p)-approx. hard

EPAS

Dvořák, Feldmann, Knop, TM, Toufar, Veselý EPAS for Steiner Trees



Intro EPAS algorithm PSAKS Conclusions

Steiner Tree – Our Results

Theorem

There is an EPAS for the Weighted Undirected Steiner Tree problem

in time 2O(p2/ε4) · nO(1).

Results

Unweighted

Weighted

Undirected Directed

EPAS f(p)-approx. hard

EPAS

Dvořák, Feldmann, Knop, TM, Toufar, Veselý EPAS for Steiner Trees



Intro EPAS algorithm PSAKS Conclusions

EPAS for Undirected Unweighted Steiner Tree – Sketch

• We can contract every edge between terminals.
• If there is a Steiner vertex with ‘many’ terminals as neighbors then
we contract them. (Denote its neighbors that are terminals by Q.)

• The contraction cost compared to a lower bound for the optimum
cost |Q|

|Q|−1 .
• If this fraction is less than 1 + ε then we can perform contractions
recursively.

• If not then we have a bounded number of terminals in terms of ε
and p: |R| ≤ 2p

ε .
• So, we can use a known algorithm parameterized by |R|.
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Overview of algorithm
We define a star C as the central vertex v and the subset Q of its
adjacent terminals, where |Q| ≥ 2.

We define a ratio of a star C, as

w(C)
(|Q| − 1) .

· · · · · · · · · · · · · · ·

v

Q

C
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Overview of algorithm

Phase 1: We contract the star with the best ratio until the number of
terminals (|R|) is small (O(p2/ε4))
Phase 2: Run an FPT algorithm for parameterization by |R|.

· · · · · ·

v
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Analysis

• For analysis we start with an optimal solution T ∗.
• We maintain a tree originating from T ∗ in the contracted instances.
• Denote the tree after t steps of the algorithm by T ∗t .

We compare the weight of each contraction with a subset of an optimal
solution T ∗.

• In each step we compare weight of w(Ct) with w(Dt).
• Dt is a feedback edge set of T ∗t / Ct

· · · · · ·

v

Ct

F ∗t

v′ v′

F ∗t+1
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Analysis

• If w(Ct) ≤ (1 + ε)w(Dt) for every t our algorithm is
(1 + ε)-approximating.

• Unfortunately, this is not always the case. We call such
contractions bad and other contraction good.
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Proposition
If a star C contains at least (1 + ε)p/ε terminals then contraction of C
is good.
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Bounding Bad Contractions – Key Technical Idea –
Sketch

• We rescale weights to be ≥ 1.
• We bound the number of bad contractions in a single interval(

(1 + δ)j , (1 + δ)j+1)
based on the ratio of the contracted star.

• Now, crucial is to obtain a lower bound on the optimum based on
the largest j s.t. there was a contraction in j-th interval, or

• otherwise to prove that the number of terminals is bounded in
therms of p and ε.
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Kernelization – Our Results
Definition (PSAKS)
Polynomial Size Approximate Kernelization Scheme for minimization
problem is defined as follows: For all ε > 0 there exists an algorithm
that runs in polynomial time (nO(1)) s.t. it returns an
(1 + ε)-approximate kernel of size O(pf(ε)).

Theorem

There is a PSAKS for the Weighted Undirected Steiner Tree problem. It
computes an (1 + ε)-approximate kernel

of size (p/ε)2O(1/ε)
.

PSAKS

Unweighted

Weighted

Undirected Directed

PSAKS f(p)-approx. hard

noPSAKS [DFKMTV]Dvořák, Feldmann, Knop, TM, Toufar, Veselý EPAS for Steiner Trees
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Lossy Kernelization

• The phase 1 leaves us with an instance with O(p2/ε4) terminals,
but the instance size may still be large (unbounded in terms of p
and ε).

• There exists a PSAKS for parameterization by |R|, returning kernel
of size |R|2O(1/ε) [Lokshtanov et al. 17].

• Combining these two we get a polynomial size (1 + ε)-approximate
kernel

of size(p/ε)2O(1/ε)
.
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Generalizations of Steiner Tree

Weighted Steiner Forest
Input: A graph G = (V,E), a list of terminal pairs
{s1, t1}, . . . , {sk, tk}, and a weight function w : E → R+.
Task: Find a forest F ⊆ E of smallest weight such that si and ti is
in the same component of F for every i.

In contrast there is no FPT algorithm w.r.t. to number of Terminals in
the optimal solution and it is APX-hard even without Steiner vertices.

We extend our results to Steiner Forest while parameterized by the
number of components of the optimal solution in addition to p.

Dvořák, Feldmann, Knop, TM, Toufar, Veselý EPAS for Steiner Trees
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Task: Find a forest F ⊆ E of smallest weight such that si and ti is
in the same component of F for every i.

In contrast there is no FPT algorithm w.r.t. to number of Terminals in
the optimal solution and it is APX-hard even without Steiner vertices.

We extend our results to Steiner Forest while parameterized by the
number of components of the optimal solution in addition to p.
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Open problems

PSAKS

Unweighted

Weighted

Undirected Directed

PSAKS f(p)-approx. hard

noPSAKS [DFKMTV]

Runtime lower-bound
What is the best runtime dependence on p and ε under Exponential
Time Hypothesis?

Thank you for your attention!
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Open problems

Definition (EPSAKS)
Efficient Polynomial Size Approximate Kernelization Scheme for
minimization problem stands for: For all ε > 0 there exists an
algorithm that runs in polynomial time (nO(1)) such that it returns an
(1 + ε)-approximate kernel of size f(ε) · pO(1).

Runtime lower-bound
What is the best runtime dependence on p and ε under Exponential
Time Hypothesis?

Thank you for your attention!
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