Maximum Weight Independent Set in Graphs with no Long Claws in Quasi-Polynomial Time

Peter Gartland, Daniel Lokshtanov, Tomáš Masařík, Marcin Pilipczuk, Michał Pilipczuk, Paweł Rzążewski

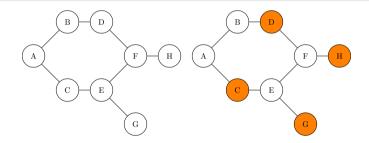
University of Warsaw, Poland

STOC Vancouver 2024

Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{N}$. The MWIS problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.



Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{N}$. The MWIS problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: DEF: Graph classes closed under vertex-deletion operation.

• Characterized by a collection of forbidden induced subgraphs.

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{N}$. The MWIS problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: Characterized by a collection of forbidden induced subgraphs.

For **one** forbidden subgraph H ('82 Alekseev):

- Subdividing strategy proves NP-completeness when *H* is **not** a **forest** or **have two degree-three vertices** in one connected component.
- NP-complete when H does have more than three leaves in one connected component.

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{N}$. The MWIS problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: Characterized by a collection of forbidden induced subgraphs.

For **one** forbidden subgraph H ('82 Alekseev):

- Subdividing strategy proves NP-completeness when *H* is **not** a **forest** or **have two degree-three vertices** in one connected component.
- NP-complete when H does have more than three leaves in one connected component.

Let P_t be a path on t vertices. ••••• Let $S_{t,t,t}$ be a t-1 times subdivided claw.

Positive Results for MWIS

'08 Lozin, Milanič
 → Polynomial on S_{1,1,2}-free graphs

- V.
- '14 Lokshtanov, Vatshelle, and Villanger → Polynomial on P₅-free graphs
- '19 Grzesik, Klimošová, Pilipczuk, Pilipczuk
 → Polynomial on P₆-free graphs
- '20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé \rightsquigarrow QPTAS, subexp. on $S_{t,t,t}$ -free graphs

Positive Results for MWIS

- '19 Grzesik, Klimošová, Pilipczuk, Pilipczuk
 → Polynomial on P₆-free graphs
- '20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé
 → QPTAS, subexp. on S_{t,t,t}-free graphs
- '20 Gartland, Lokshtanov & '21 Pilipczuk, Pilipczuk, Rzążewski
 ~> Quasi-polynomial on Pt-free graphs
- '21 Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzążewski
 → Quasi-polynomial on C≥t-free graphs
- '22 Abrishami, Chudnovsky, Dibek, and Rzążewski
 → Polynomial on S_{t,t,t}-free graphs of bounded degree

Positive Results for MWIS

- '19 Grzesik, Klimošová, Pilipczuk, Pilipczuk
 → Polynomial on P₆-free graphs
- '20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé
 → QPTAS, subexp. on S_{t,t,t}-free graphs
- '20 Gartland, Lokshtanov & '21 Pilipczuk, Pilipczuk, Rzążewski
 → Quasi-polynomial on Pt-free graphs
- '21 Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzążewski
 ~> Quasi-polynomial on C>t-free graphs
- '22 Abrishami, Chudnovsky, Dibek, and Rzążewski → Polynomial on S_{t,t,t}-free graphs of bounded degree

Theorem (MWIS in Quasipolynomial Time [GLMPPR '23]) For every H that is a forest whose every component has at most three leaves, there is an algorithm for the MAXIMUM WEIGHT INDEPENDENT SET problem in H-free graphs running in time $n^{\mathcal{O}_{H}(\log^{19} n)}$.

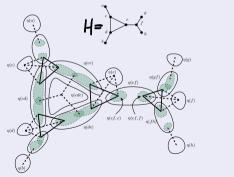
Structural part

• Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]

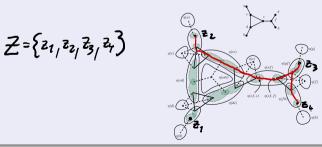
An extended strip decomposition of a graph G is a pair (H, η) , where H is a simple graph and $\eta(\cdot) \subseteq V(G)$, such that.

- $\label{eq:product} \{ \eta(o) \mid o \in V(H) \cup E(H) \cup T(H) \} \text{ is a } \\ \text{partition of } V(G).$
- **2** For every $x \in V(H)$ and every distinct $y, z \in N_H(x)$, the set $\eta(xy, x)$ is **complete** to $\eta(xz, x)$.
- **3** Every $uv \in E(G)$ is **contained** in one of the sets $\eta(\cdot)$ or
 - $u \in \eta(xy, x), v \in \eta(xz, x)$ for some $x \in V(H)$ and $y, z \in N_H(x)$, or
 - $u \in \eta(xy, x), v \in \eta(x)$

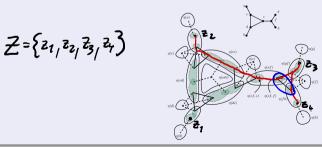
• $u \in \eta(xyz)$ and $v \in \eta(xy, x) \cap \eta(xy, y)$ for some $xyz \in T(H)$.



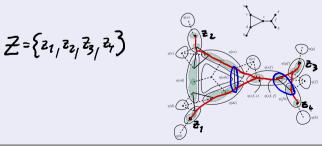
- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10] Theorem: Let G be an n-vertex graph and $Z \subseteq V(G)$ with $|Z| \ge 2$. There is an algorithm that runs in time $\mathcal{O}(n^5)$ and returns one of the following:
 - an induced subtree of G containing at least three elements of Z, or
 - a rigid extended strip decomposition (H, η) of (G, Z).



- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10] Theorem: Let G be an n-vertex graph and $Z \subseteq V(G)$ with $|Z| \ge 2$. There is an algorithm that runs in time $\mathcal{O}(n^5)$ and returns one of the following:
 - an induced subtree of G containing at least three elements of Z, or
 - a rigid extended strip decomposition (H, η) of (G, Z).



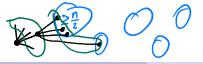
- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10] Theorem: Let G be an n-vertex graph and $Z \subseteq V(G)$ with $|Z| \ge 2$. There is an algorithm that runs in time $\mathcal{O}(n^5)$ and returns one of the following:
 - an induced subtree of G containing at least three elements of Z, or
 - a rigid extended strip decomposition (H, η) of (G, Z).



- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for S_{t,t,t} Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function w : V(G) → [0, +∞), and t ≥ 1, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, and $t \ge 1$, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, and $t \ge 1$, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.



- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, and $t \ge 1$, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, and $t \ge 1$, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

In PL-Free graphs

- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [Majewski, Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski '22]: Given an *n*-vertex graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, and $t \ge 1$, one can in polynomial time either:
 - output an induced copy of $S_{t,t,t}$ in G, or
 - output a set \mathcal{P} of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and an extended strip decomposition of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has weight at most $0.5\mathfrak{w}(G)$, i.e., *refined*.

- Tool 1: Extended strip decomposition [Chudnovsky & Seymour '10]
- Tool 2: 3-in-a-tree theorem [Chudnovsky & Seymour '10]
- Tool 3: Gyárfás' path analog for $S_{t,t,t}$ Theorem [MMNOPRzS '22]:
- The extended strip lemma [GLMPPR '23]: For every fixed integer t there exists an integer c_t and a polynomial-time algorithm that, given an n-vertex graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a vertex $v \in V(G)$, and a refined extended strip decomposition (H, η) of G v, returns one of the following:
 - **1** an induced copy of $S_{t,t,t}$ in G;
 - **2** c_t -dominated 0.99τ -balanced separator;
 - **3** a **refined** extended strip decomposition of G.

The extended strip lemma [GLMPPR '23]:

For every fixed integer t there exists an integer c_t and a **polynomial-time algorithm** that, given an n-vertex graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a **vertex** $v \in V(G)$, and a **refined extended strip decomposition** (H, η) of G - v, returns one of the following:

- **1** an induced copy of $S_{t,t,t}$ in G;
- **2** c_t -dominated 0.99τ -balanced separator;

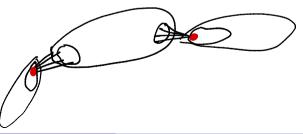
 $\mathbf{3}$ a **refined** extended strip decomposition of G.

The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a **polynomial-time algorithm** that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a $v \in V(G)$, and a **refined extended strip decomposition** (H, η) of G - v, returns one of the following:

1 c_t -dominated 0.99τ -balanced separator; **2** a refined extended strip decomposition of G_{-1}

Observe: No particle has weight ≥0.019. IF so ⑦.



The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following:

1 c_t -dominated 0.99τ -balanced separator; **2** a refined extended strip decomposition of G.

Case O: If
$$w(V(6) \setminus N_{[6]}(\tau)) \leq 0.997$$
 then (7).

The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following:

1 c_t -dominated 0.99τ -balanced separator; **2** a refined extended strip decomposition of G.

Case 0: If
$$w(V(G) \setminus N_{EG}(T)) \leq 0.997$$
 then (1).
(a se 1: IF $G \setminus N[T]$ contains small separator X. then $X \cup N[T]$ is (1).

The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a **polynomial-time algorithm** that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a $v \in V(G)$, and a **refined extended strip decomposition** (H, η) of G - v, returns one of the following:

1 c_t -dominated 0.99τ -balanced separator; **2** a refined extended strip decomposition of G_{-1}

$$\frac{CaseO}{IF} = IF w(V(G) \setminus N_{EE}(T)) \leq 0.997 \text{ then } D.$$

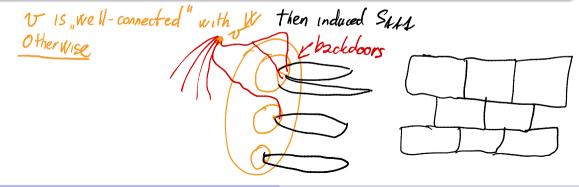
$$\frac{Case1}{IF} = IF \otimes V[T_{T}] \text{ contains small separator } X. \text{ then } X \cup V[T_{T}] \cup D.$$

$$\frac{O \text{ therwise}}{IF} = 3 O(4) \times O(4) \text{ wall } st \neq (A_{1}B) \in T_{W} \text{ B contains } W \text{ and } have weight \geq 0.997}$$

The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following:

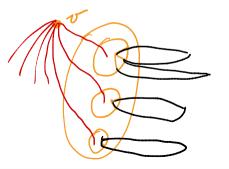
1 c_t -dominated 0.99τ -balanced separator; **2** a refined extended strip decomposition of G.

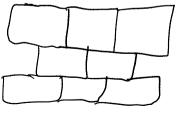


The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following:

1 c_t -dominated 0.99 τ -balanced separator; **2** a refined extended strip decomposition of G.

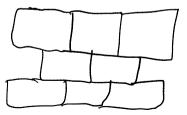




The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a **polynomial-time algorithm** that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w} : V(G) \to [0, +\infty)$, a real $\tau \ge \mathfrak{w}(G)$, a $v \in V(G)$, and a **refined extended strip decomposition** (H, η) of G - v, returns one of the following: 1 c_t -dominated 0.99τ -balanced separator; 2 a refined extended strip decomposition of G.

• c_t -dominated 0.99τ -balanced separator; • IF no back doors USE 3-in 2 tree on A $w(A) \leq 0.01 T$ • $w(A) \leq 0.01 T$



The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following: Use 3-in 2 tree on A with $Z = \sum x_1 x_2 x_2' x_2' x_1'' x_2''$ **1** c_t -dominated 0.99 τ -balanced separator: **2** a **refined** extended strip decomposition of G. W(A) 40.01 IF A has esd 125 then connect [⁴"

The extended strip lemma [GLMPPR '23]:

For $t \in \mathbb{N}$ there exists $c_t \in \mathbb{N}$ and a polynomial-time algorithm that, given an *n*-vertex $S_{t,t,t}$ -free graph G, a weight function $\mathfrak{w}: V(G) \to [0, +\infty)$, a real $\tau \geq \mathfrak{w}(G)$, a $v \in V(G)$, and a refined extended strip decomposition (H, η) of G - v, returns one of the following: **1** c_t -dominated 0.99 τ -balanced separator; **2** a **refined** extended strip decomposition of G. Use 3-in 2 tree on A With $Z = \sum x_1 x_2 x_2' x_2' x_1'' x_2''$ W(A) 40.01 IF A has induced tree on Z. then demonstrate Stif

k-dominated b-balanced separators

- DEF: Set S ⊆ V(G) such that no component of G − S has more than b vertices (or weight ≤ b) and S is dominated by k vertices.
- Used to show quasipolynomial-time algorithm on P_t -free graphs [Gartland&Lokshtanov '21]
- Do not have to exist in $S_{t,t,t}$ -free graphs, e.g., the line graph of a clique!

$k\text{-}\mathsf{dominated}\ b\text{-}\mathsf{balanced}\ \mathsf{separators}$

- DEF: Set S ⊆ V(G) such that no component of G − S has more than b vertices (or weight ≤ b) and S is dominated by k vertices.
- Used to show quasipolynomial-time algorithm on Pt-free graphs [Gartland&Lokshtanov '21]
- Do not have to exist in $S_{t,t,t}$ -free graphs, e.g., the line graph of a clique!

s-boosted balanced separator

Simplified DEF: a set N[S] dominated by a set S of at most s vertices, such that no component of G - N[S] has more than $|V(G)|/16s^2$ vertices. Packing lemma: Let G be an n-vertex $S_{t,t,t}$ -free graph, $s \in \mathbb{N}$, and \mathcal{F} a multi-set of subsets of V(G) such that every set in \mathcal{F} is an s-boosted balanced separator. Assume no vertex belongs to more than c sets of \mathcal{F} . Then, provided $|\mathcal{F}| \geq 80sct$, no component of G contains over 3n/4 vertices.

- ~ Quasipolynomial branching
- Packing lemma is true assuming only k-dominated b-balanced separators in P_t -free graphs

k-dominated b-balanced separators

- DEF: Set S ⊆ V(G) such that no component of G − S has more than b vertices (or weight ≤ b) and S is dominated by k vertices.
- Used to show quasipolynomial-time algorithm on Pt-free graphs [Gartland&Lokshtanov '21]
- Do not have to exist in $S_{t,t,t}$ -free graphs, e.g., the line graph of a clique!

s-boosted balanced separator

Simplified DEF: a set N[S] dominated by a set S of at most s vertices, such that no component of G - N[S] has more than $|V(G)|/16s^2$ vertices. Packing lemma: Let G be an n-vertex $S_{t,t,t}$ -free graph, $s \in \mathbb{N}$, and \mathcal{F} a multi-set of subsets of V(G) such that every set in \mathcal{F} is an s-boosted balanced separator. Assume no vertex belongs to more than c sets of \mathcal{F} . Then, provided $|\mathcal{F}| \geq 80sct$, no component of G contains over 3n/4 vertices.

- ~ Quasipolynomial branching
- Packing lemma is true assuming only k-dominated b-balanced separators in P_t -free graphs

s-boosted balanced separator

Simplified DEF: a set N[S] dominated by a set S of at most s vertices, such that no component of G - N[S] has more than $|V(G)|/16s^2$ vertices.

Packing lemma: Let G be an n-vertex $S_{t,t,t}$ -free graph, $s \in \mathbb{N}$, and \mathcal{F} a multi-set of subsets of V(G) such that every set in \mathcal{F} is an *s*-boosted balanced separator. Assume no vertex belongs to more than c sets of \mathcal{F} . Then, provided $|\mathcal{F}| \geq 80sct$, no component of G contains over 3n/4 vertices. \rightsquigarrow Quasipolynomial branching

• Packing lemma is true assuming only k-dominated b-balanced separators in P_t -free graphs

Boosting balanced separator

Boosting lemma: Let G be an n-vertex $S_{t,t,t}$ -free graph, let N[S] be a balanced separator for G dominated by a set S of at most c_t vertices, and let \mathcal{F} be a multi-set of $|\mathbf{relevant}(G, S)|/100c_t^3$ -balanced separators for $(G, \mathrm{relevant}(G, S))$. Assume no vertex belongs to more than c sets of \mathcal{F} . If $|\mathcal{F}| \ge 10ct$, either S is a c_t -boosted balanced separator or no component of G contains more than 3n/4 vertices.

~ Quasipolynomial branching

Open questions

• Polynomial algorithm for MWIS on $S_{t,t,t}$ -free graphs?

Open questions

- Polynomial algorithm for MWIS on $S_{t,t,t}$ -free graphs?
- Devise some structure that use $S_{t,t,t}$ -freenes everywhere.

Open questions

- Polynomial algorithm for MWIS on $S_{t,t,t}$ -free graphs?
- Devise some structure that use $S_{t,t,t}$ -freenes everywhere.
- Ideally, such that each part of the decomposition has a polynomial algorithm solving MWIS.

Open questions

- Polynomial algorithm for MWIS on $S_{t,t,t}$ -free graphs?
- Devise some structure that use $S_{t,t,t}$ -freenes everywhere.
- Ideally, such that each part of the decomposition has a polynomial algorithm solving MWIS.
- Polynomial algorithm for MWIS on *P_t*-free graphs?

Open questions

- Polynomial algorithm for MWIS on $S_{t,t,t}$ -free graphs?
- Devise some structure that use $S_{t,t,t}$ -freenes everywhere.
- Ideally, such that each part of the decomposition has a polynomial algorithm solving MWIS.
- Polynomial algorithm for MWIS on *P_t*-free graphs?

Thank you for your attention!