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Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V(G) — N. The MWIS problem asks for a set I C V(G) s.t.
G|[I] is edgeless and to([) is as large as possible.
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Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V(G) — N. The problem asks for a set I C V(G) s.t.

G|[I] is edgeless and to([) is as large as possible.

DEF: Graph classes closed under vertex-deletion operation.
e Characterized by a collection of
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G|[I] is edgeless and to([) is as large as possible.

problem asks for a set I C V(G) s.t.

Characterized by a collection of

For forbidden subgraph H ('82 Alekseev):

® Subdividing strategy proves NP-completeness when H is

or

in one connected component. Ij >———O<

® NP-complete when H does have
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Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V(G) — N. The problem asks for a set I C V(G) s.t.
G|[I] is edgeless and to([) is as large as possible.

Characterized by a collection of

For forbidden subgraph H ('82 Alekseev):

® Subdividing strategy proves NP-completeness when H is
in one connected component.
® NP-complete when H does have

or

in one connected component.

Let /; be a path on t vertices. «—=+—=— Let be a ¢t — 1 times subdivided claw.
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Positive Results for MWIS

¢ ’'08 Lozin, Milanic
~~ Polynomial on S 1 o-free graphs '\Z,_.
® '14 Lokshtanov, Vatshelle, and Villanger

~» Polynomial on Ps-free graphs

® '19 Grzesik, Klimosova, Pilipczuk, Pilipczuk
~> Polynomial on Ps-free graphs

® '20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé
~+ QPTAS, subexp. on S;;-free graphs
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® '20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé
~+ QPTAS, subexp. on S;;-free graphs
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~» Quasi-polynomial on P;-free graphs
e '21 Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski
~> Quasi-polynomial on C>;-free graphs
® '22 Abrishami, Chudnovsky, Dibek, and Rzazewski
~+ Polynomial on S; ; ;-free graphs of bounded degree

Theorem (MWIS in Quasipolynomial Time [GLMPPR '23]) JQSJ/‘L

For every H that is a forest whose every component has at most three leaves, there is an
algorithm for the MAXIMUM WEIGHT INDEPENDENT SET problem in H-free graphs running
in time nOn(log™ n),
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Proof—Structural Part

Structural part

o [Chudnovsky & Seymour '10]
An extended strip decomposition of a graph ® u e n(zyz) and v € n(zy, z) Nn(zy,y)
G is a pair (H,n), where H is a simple for some zyz € T(H).

graph and 7(-) C V(G), such that.
@ {n(o) |oe V(H)UEH)UT(H)}is a
of V(G).
@ For every x € V(H) and every distinct
Y,z € Ng(z), the set n(zy, x) is
to n(zz,x).
© Every wv € E(G) is in one of
the sets n(-) or
® u e n(zy,z),v € n(zz,z) for some
xz € V(H) and y,z € Nu(x), or
* yen(zy,z),v € n(z)
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Proof—Structural Part

Structural part
. [Chudnovsky & Seymour '10]

o [Chudnovsky & Seymour '10]
Theorem: Let G be an n-vertex graph and with |Z| > 2. There is an
algorithm that runs in time O(n”) and returns one of the following:

® an of G containing elements of Z, or
® arigid

23{21/23/2'3/34,3
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Proof—Structural Part

Structural part

o [Chudnovsky & Seymour '10]
o [Chudnovsky & Seymour '10]
o Theorem [Majewski, Masafik, Novotna,

Okrasa, Pilipczuk, Rzazewski, and Sokofowski '22]: Given an n-vertex graph G, a
weight function w : V(G) — [0,4+00), and ¢ > 1, one can in polynomial time either:

e output an induced copy of S;;; in G, or

e output a set P of at most 11logn + 6 induced paths in GG, each of length at most
t + 1, and an extended strip decomposition of G — N[Upcp V(P)] whose every
particle has weight at most 0.5t (G), i.e., refined.
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Proof—Structural Part

Structural part

o [Chudnovsky & Seymour '10]
o [Chudnovsky & Seymour '10]
o Theorem [Majewski, Masafik, Novotna,

Okrasa, Pilipczuk, Rzazewski, and Sokofowski '22]: Given an n-vertex graph G, a
weight function o : V(G) — [0, +00), and ¢t > 1, one can in polynomial time either:

e output an induced copy of S;;; in G, or

e output a set P of at most 11logn + 6 induced paths in GG, each of length at most
t + 1, and an extended strip decomposition of G — N[Upcp V(P)] whose every
particle has weight at most 0.5 (G), i.e., refined.

O @ In & ~Free /ra/_c
wh’@f' 4-1 vertices.
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Proof—Structural Part

Structural part

o [Chudnovsky & Seymour '10]

o [Chudnovsky & Seymour '10]

o Theorem [MMNOPRzS ’22]:

. [GLMPPR ’23]: For every fixed integer t there exists an

integer ¢; and a polynomial-time algorithm that, given an n-vertex graph G, a weight
function w : V(G) — [0, 4+00), a real 7 > w(G), a vertex v € V(G), and a refined
extended strip decomposition (H,n) of G — v, returns one of the following:

@ an induced copy of St ;¢ in G;

@ c;-dominated 0.997-balanced separator;

© a refined extended strip decomposition of G.
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Proof Sketch—The Extended Strip Lemma

The extended strip lemma [GLMPPR ’23]:

For every fixed integer t there exists an integer ¢; and a polynomial-time algorithm that,
given an n-vertex graph G, a weight function 1o : V(G) — [0, +00), a real 7 > t0(G), a

vertex v € V(G), and a refined extended strip decomposition (H,7) of G — v, returns one

of the following:
® an induced copy of S; ;¢ in G|
® c.-dominated 0.997-balanced separator;

© a refined extended strip decomposition of G.
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Proof—Algorithmic Part

k-dominated b-balanced separators

® DEF: Set S C V(G) such that no component of G — S has more than b vertices
(or weight < b) and S'is by k vertices.

® Used to show quasipolynomial-time algorithm on P;-free graphs
[Gartland&Lokshtanov "21]

® Do not have to exist in S ;-free graphs, e.g., the line graph of a clique!
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and S'is by k vertices.
® Used to show quasipolynomial-time algorithm on P;-free graphs [Gartland&Lokshtanov ’21]

® Do not have to exist in S+ -free graphs, e.g., the line graph of a clique!

s-boosted balanced separator

Simplified DEF: a set N[S]| dominated by a set S of at most , such that no
component of G — N[S] has more than vertices.

Packing lemma: Let G be an n-vertex S; ; ;-free graph, s € N, and F a multi-set of subsets
of V(G) such that every set in F is an balanced separator. Assume no vertex
belongs to more . Then, provided |F| > 80sct, no component of G contains
over 3n/4 vertices.

~» Quasipolynomial branching

e Packing lemma is true assuming only k-dominated b-balanced separators in graphs
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Proof—Algorithmic Part

s-boosted balanced separator

Simplified DEF: a set N[S] dominated by a set S of at most , such that no component of
G — N|[S] has more than vertices.
Packing lemma: Let G be an n-vertex Sy . ;-free graph, s € N, and F a multi-set of subsets of V' (G)
such that every set in F is an balanced separator. Assume no vertex belongs to more

. Then, provided |F| > 80sct, no component of G contains over 3n/4 vertices.
~> Quasipolynomial branching
e Packing lemma is true assuming only k-dominated b-balanced separators in graphs

Boosting balanced separator

Boosting lemma: Let G be an n-vertex S -free graph, let N[S] be a balanced separator
for G dominated by a set .S of at most ¢; vertices, and let F be a multi-set of
relevant (G, S)|/100c}-balanced separators for (G, relevant(G, S)). Assume no vertex
belongs to more than ¢ sets of F. If || > 10ct, either S is a c;-boosted balanced separator
or no component of G contains more than 3n/4 vertices.

~» Quasipolynomial branching
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Conclusions

Open questions
® Polynomial algorithm for MWIS on S, ; ;-free graphs?
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Conclusions

Open questions
® Polynomial algorithm for MWIS on S, ; ;-free graphs?
® Devise some structure that use S; ; -freenes everywhere.

® |deally, such that each part of the decomposition has a polynomial algorithm solving
MWIS.

® Polynomial algorithm for MWIS on P;-free graphs?

Thank you for your attention!
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