# Constant Congestion Brambles in Directed Graphs

#### Tomáš Masařík, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge



Simon Fraser University, BC, Canada & University of Warsaw, Poland





#### TU Berlin seminar 2021







### Theorem (**Undirected** grid by Robertson & Seymour '86)

For every  $k \ge 1$  there exists t = f(k) such that every graph of treewidth at least t contains a  $k \times k$  grid as a minor.

#### Theorem (**Undirected** grid by Chuzhoy & Tan '21)

For every  $k \ge 1$  there exists  $t = O(k^9 \operatorname{polylog}(k))$  such that every graph of treewidth at least t contains a  $k \times k$  grid as a minor.

#### Theorem (**Directed** grid Kawarabayashi & Kreutzer '15)

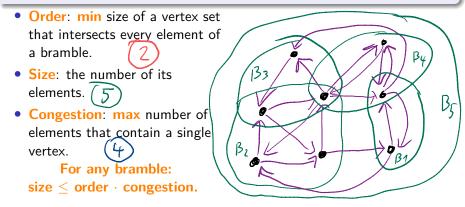
For every  $k \ge 1$  there exists t = f(k) such that every directed graph of directed treewidth at least t contains a  $k \times k$  directed grid as a minor.

# "Relaxed Grid" — Bramble

Definition

B1, B2, B3, By, B5 A directed bramble is a family of strongly connected subgraphs s.t.:

- every two subgraphs either intersect in a vertex, or
- the graph contains an arc from one to the other and an arc back.



"Relaxed Grid" — Bramble

#### Definition

#### A directed bramble is a family of strongly connected subgraphs s.t.:

- every two subgraphs either intersect in a vertex, or
- the graph contains an arc from one to the other and an arc back.

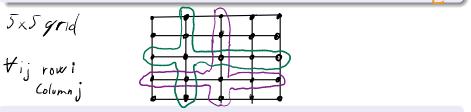
#### Theorem (MPRzS '21)

For every  $k \ge 1$  there exists  $t = O(k^{48} \log^{13} k)$  such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

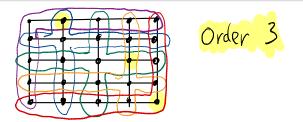
# Brambles — Undirected Graphs

For any bramble: size  $\leq$  order  $\cdot$  congestion.

 $k \times k$  grid contains a bramble of order k and size  $k^2$ , but congestion  $k \cdot l$ 



 $k \times k$  grid contains a bramble of congetion 2, order  $\lfloor k/2 \rfloor$  and size k.



Theorem (Seymour, Thomas '93)

Max order of a bramble is **exactly** its treewidth + 1.

Theorem (Grohe, Marx '09 and Hatzel, Komosa, Pilipczuk, Sorge '20)

There are classes of graphs where for each  $0 < \delta < 1/2$  any bramble of order  $\tilde{\Omega}(k^{(0.5+\delta)})$  requires exponential size in  $k^{2\delta}$ .

For any bramble: size  $\leq$  order  $\cdot$  congestion.

Theorem (Reed '99)

Max order of a bramble is up to constant factor its treewidth.

### Theorem (Grohe, Marx '09)

There are classes of graphs where for each  $0 < \delta < 1/2$  any bramble of order  $\tilde{\Omega}(k^{(0.5+\delta)})$  requires exponential size in  $k^{2\delta}$ .

#### For any bramble: size $\leq$ order $\cdot$ congestion.

### Theorem (MPRzS '21)

For every  $k \ge 1$  there exists  $t = O(k^{48} \log^{13} k)$  such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

### Theorem (MPRzS '21)

For every  $k \ge 1$  there exists  $t = O(k^{48} \log^{13} k)$  such that every directed graph of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.

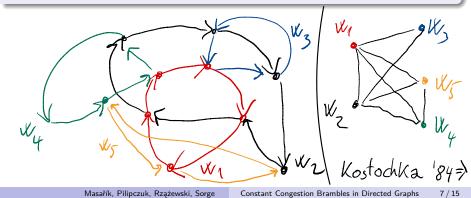
Directed grid give congestion 2 bramble of linear size.

Hence,

- Kawarabayashi and Kreutzer '15 gives congestion 2 but small-sized bramble.
- Half-integral grid (Kawarabayashi, Kobayashi, Kreutzer '14) gives congestion 4 but small-sized bramble.
- **Planar graphs** grid (Hatzel, Kawarabayashi, Kreutzer '10) gives congestion 2 polynomial bound on a bramble.

### Lemma (Dense winning scenario)

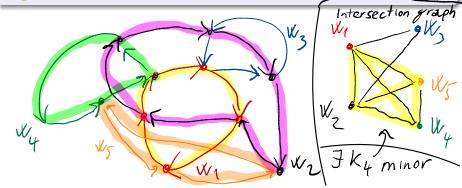
Let  $c_{KT}$  be the constant from Kostochka '84. If a graph G contains a family W of **closed walks** of congestion  $\alpha$ , whose intersection graph is not  $c_{KT} \cdot d \cdot \sqrt{\log d}$ -degenerate, then G contains a bramble of congestion  $\alpha$  and size d.

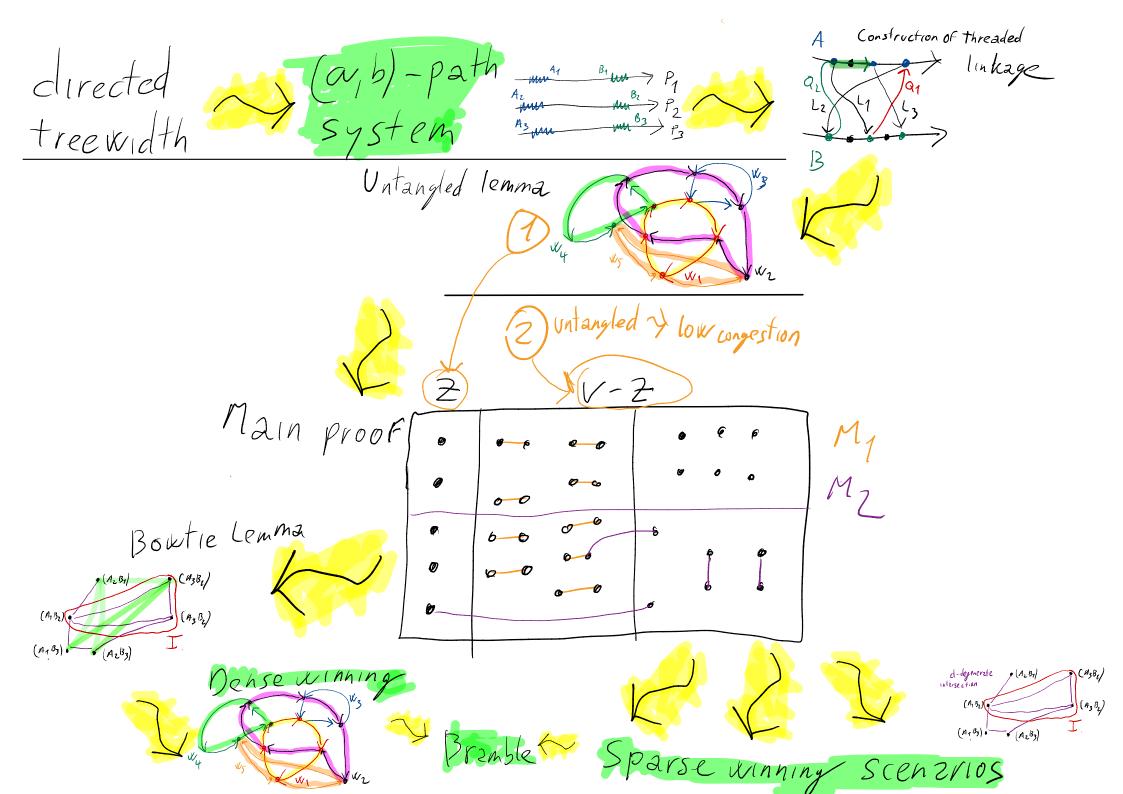


# Proof — Extracting a bramble (Dense case)

### Lemma (Dense winning scenario)

Let  $c_{KT}$  be the constant from Kostochka '84. If a graph G contains a family W of **closed walks** of congestion  $\alpha$ , whose intersection graph is not  $c_{KT} \cdot d \cdot \sqrt{\log d}$ -degenerate, then G contains a bramble of congestion  $\alpha$  and size d.





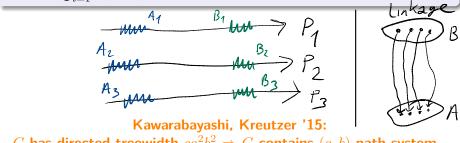
# Proof — Starting Point

### Definition (Path system)

Let  $a, b \in \mathbb{N}$ . An (a, b)-path system  $(P_i, A_i, B_i)_{i=1}^a$  consists of

- vertex-disjoint paths  $P_1, P_2, \ldots, P_a$ , and
- for every i ∈ [a], two sets A<sub>i</sub>, B<sub>i</sub> ⊆ V(P<sub>i</sub>), each of size b, such that every vertex of B<sub>i</sub> appears on P<sub>i</sub> later than all vertices of A<sub>i</sub>,

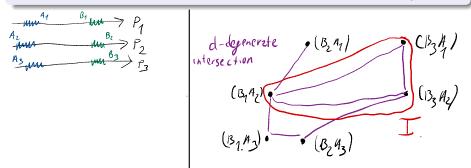
such that  $\bigcup_{i=1}^{a} A_i \cup B_i$  is well-linked in G.

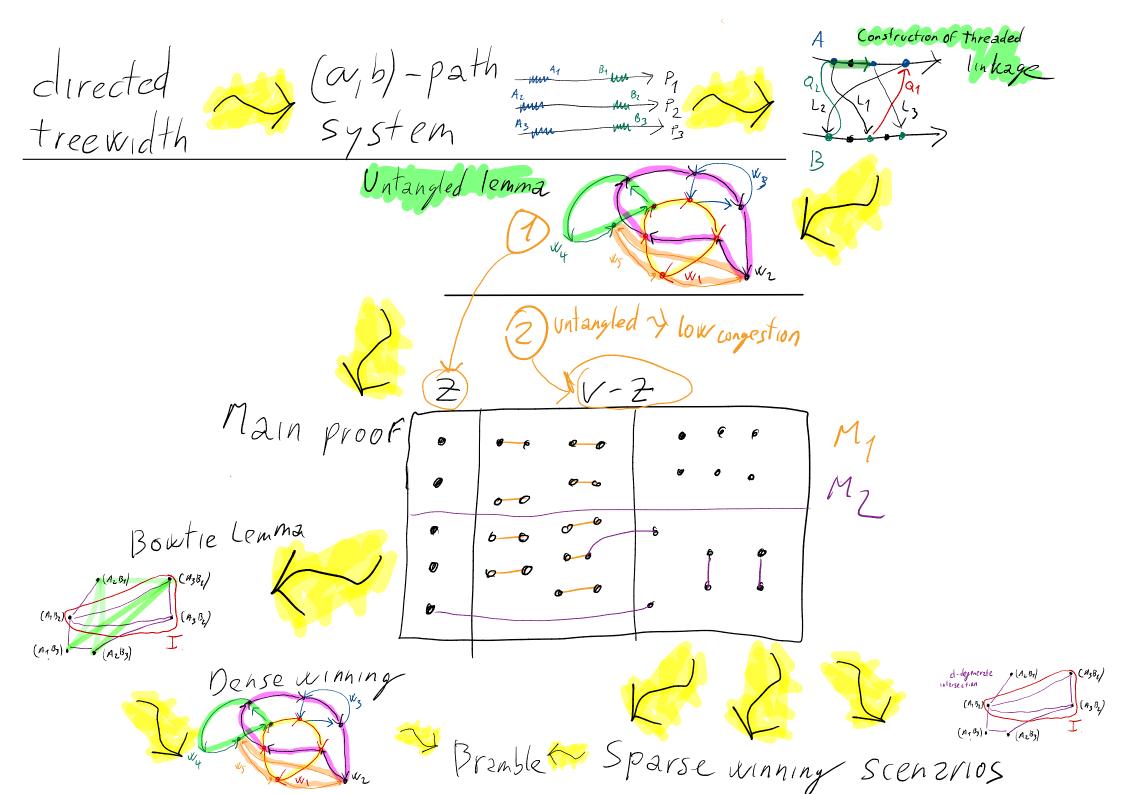


G has directed treewidth  $ca^2b^2 \Rightarrow G$  contains (a,b)-path system.

### Lemma (Sparse winning scenario)

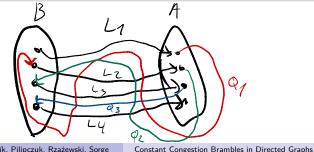
 $(P_i, A_i, B_i)_{i=1}^a$  be an (a, b)-path system,  $\mathcal{I} \subseteq [a] \times [a] \setminus \{(i, i) \mid i \in [a]\}$ , s.t.  $|\mathcal{I}| \ge 0.6 \cdot a(a-1)$ . The intersection graph of  $\mathcal{L}_{i,j}$  and  $\mathcal{L}_{i',j'}$  for every distinct  $(i, j), (i', j') \in \mathcal{I}$  is *d*-degenerate. If  $b > 4 \cdot e \cdot a^2 \cdot d$ , then *G* contains a bramble of congestion at most 4 and size  $\ge c \cdot \left(\frac{a^{1/2}}{\log^{1/4}a}\right)$ .





#### Definition (Threaded linkage)

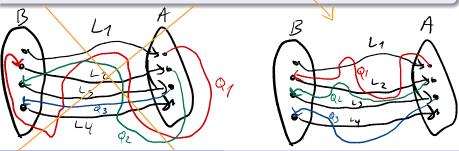
A threaded linkage is a pair  $(W, \mathcal{L})$  where  $\mathcal{L} = \{L_1, L_2, \dots, L_\ell\}$  is a linkage and W is a walk such that there exist  $\ell - 1$  paths  $Q_1, Q_2, \ldots, Q_{\ell-1}$ such that W is the concatenation of  $L_1, Q_1, L_2, Q_2, \ldots, Q_{\ell-1}, L_{\ell}$  in that order. The paths  $Q_i$  are called **threads**. A threaded linkage  $(W, \mathcal{L})$  for  $W = (L_1, Q_1, \ldots, Q_{\ell-1}, L_\ell)$  is **untangled** if for every *i*, the thread  $Q_i$ may only intersect the rest of W in  $L_i$  or  $L_{i+1}$ .



Masařík, Pilipczuk, Rzażewski, Sorge

### Definition (Threaded linkage)

A threaded linkage is a pair  $(W, \mathcal{L})$  where  $\mathcal{L} = \{L_1, L_2, \ldots, L_\ell\}$  is a linkage and W is a walk such that there exist  $\ell - 1$  paths  $Q_1, Q_2, \ldots, Q_{\ell-1}$  such that W is the concatenation of  $L_1, Q_1, L_2, Q_2, \ldots, Q_{\ell-1}, L_\ell$  in that order. The paths  $Q_i$  are called threads. A threaded linkage  $(W, \mathcal{L})$  for  $W = (L_1, Q_1, \ldots, Q_{\ell-1}, L_\ell)$  is untangled if for every i, the thread  $Q_i$  may only intersect the rest of W in  $L_i$  or  $L_{i+1}$ .



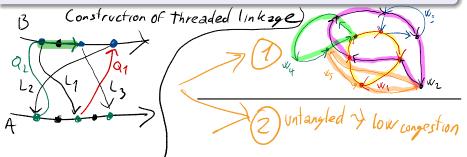
Masařík, Pilipczuk, Rzążewski, Sorge Constant Congestion Brambles in Directed Graphs 10/15

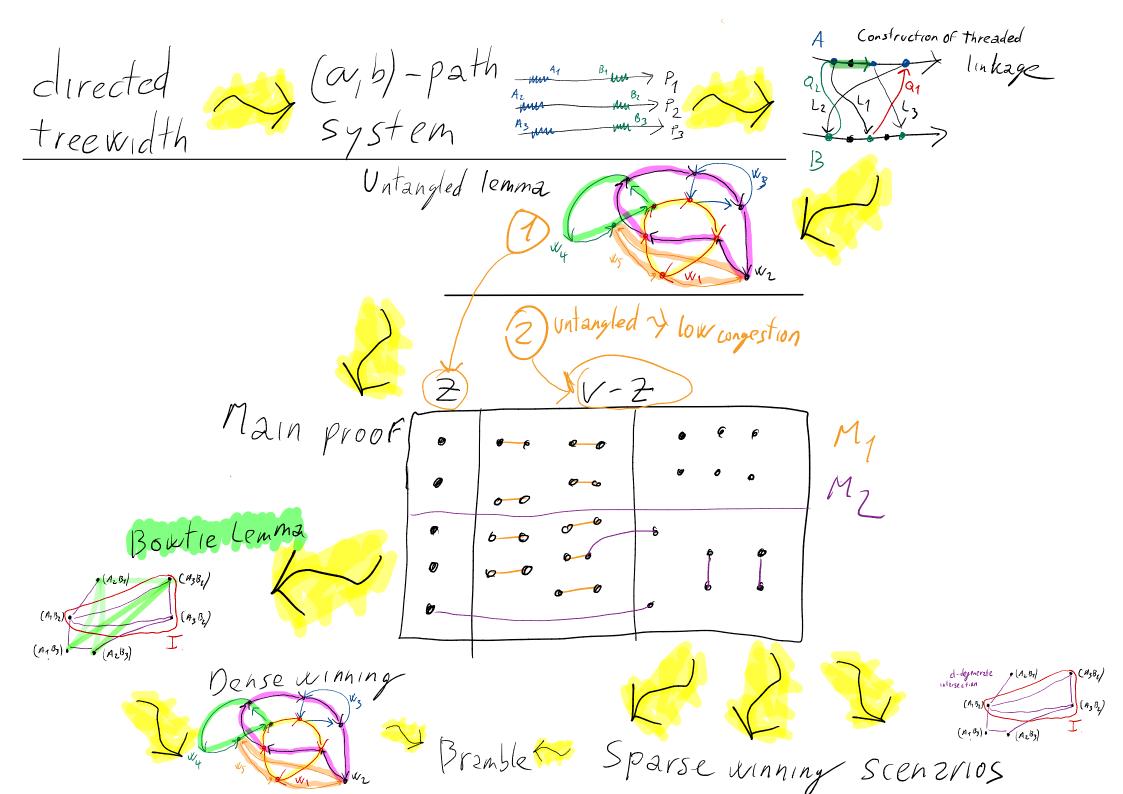
# Proof — Reduction of the congestion

### Lemma (Untangled threaded linkages)

Let  $(W, \mathcal{L})$  be a threaded linkage of size b and of overlap  $\alpha$ . Let  $x, d \in \mathbb{N}$  such that  $b \ge xd + (d-1)$ . Then one of the following exists:

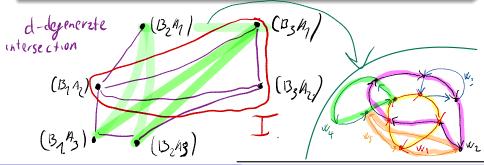
- **1** A family  $\mathcal{Z}$  of d closed walks, such that for every walk  $W \in \mathcal{Z}$  there exists a distinct path  $P(W) \in \mathcal{L}$  that is a subwalk of W, and  $\mathcal{Z}$  has overlap  $\alpha$ ; or
- 2 an untangled threaded linkage  $(W', \mathcal{L}')$  where W' is a subwalk W and  $\mathcal{L}' \subseteq \mathcal{L}$  is of size at least x. In particular,  $(W', \mathcal{L}')$  is of overlap  $\alpha$ .

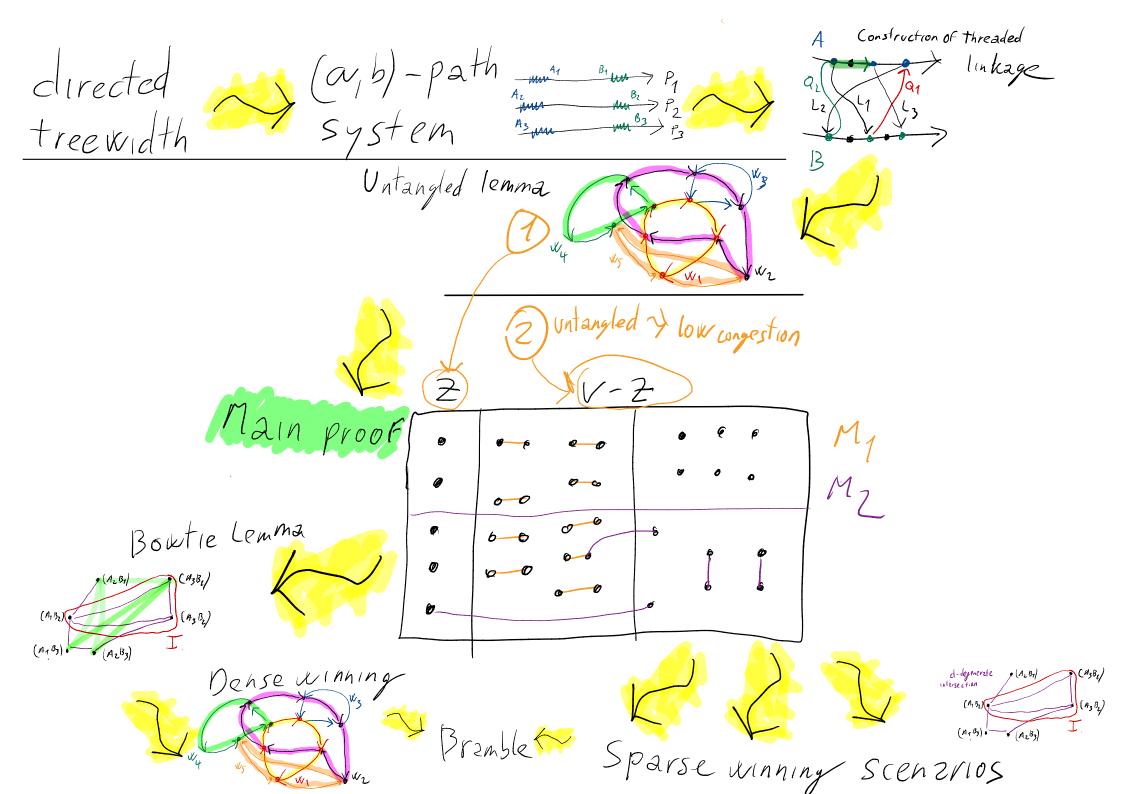




### Lemma (Bowtie lemma)

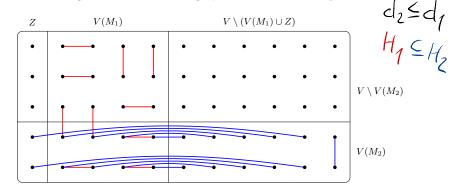
Let  $(W_1, \mathcal{L}_1)$  and  $(W_2, \mathcal{L}_2)$  be two threaded linkages of overlap  $\alpha$  and  $\beta$ , such that the intersection graph  $I(\mathcal{L}_1, \mathcal{L}_2)$  of  $\mathcal{L}_1$  and  $\mathcal{L}_2$  is **not**  $(2^9 \cdot 5 \cdot d)$ -degenerate. Then there is a family  $\mathcal{Z}$  of d closed walks such that every walk in  $\mathcal{Z}$  contains at least one path of  $\mathcal{L}_1$  and one path of  $\mathcal{L}_2$  as a subwalk, and the congestion of  $\mathcal{Z}$  is at most  $\alpha + \beta$ .



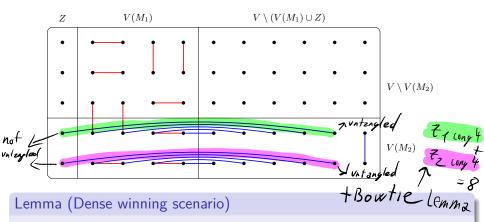


# Main Proof — Setup

Each vertex represent  $(\mathcal{B}_i, \mathcal{A}_j)$  linkage.  $Z \subseteq V$  be linkages s.t. untangled lemma results in (1) outcome: a family of closed walks  $\mathcal{Z}$  of overlap 3.  $M_1$  be a maximum matching in  $H_1 - Z$ , where edges representes linkages with intersection graph that is not  $d_1$ -degenerate.  $M_2$  be a maximum matching in graph  $(V, E(H_2) \setminus {\binom{V(M_1) \cup Z}{2}})$ , where edges representes linkages with intersection graph that is not  $d_2$ -degenerate

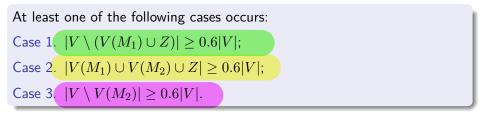


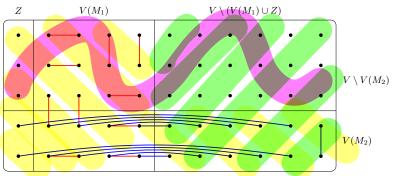
# Main Proof (Dense Case)



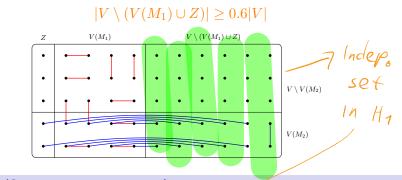
Let  $c_{KT}$  be the constant from Kostochka '84. If a graph G contains a family W of closed walks of congestion  $\alpha$ , whose intersection graph is not  $c_{KT} \cdot d \cdot \sqrt{\log d}$ -degenerate, then G contains a bramble of congestion  $\alpha$  and size d.

# Main Proof (Three Sparse Cases)





## Main Proof (Three Sparse Cases) — Case 1.



#### Lemma (Sparse winning scenario)

 $(P_i, A_i, B_i)_{i=1}^a$  be an (a, b)-path system,  $\mathcal{I} \subseteq [a] \times [a] \setminus \{(i, i) \mid i \in [a]\}$ , s.t.  $|\mathcal{I}| \ge 0.6 \cdot a(a-1)$ . The intersection graph of  $\mathcal{L}_{i,j}$  and  $\mathcal{L}_{i',j'}$  for every distinct  $(i, j), (i', j') \in \mathcal{I}$  is *d*-degenerate. If  $b > 4 \cdot e \cdot a^2 \cdot d$ , then *G* contains a bramble of congestion at most 4 and size  $\ge c \cdot \left(\frac{a^{1/2}}{\log^{1/4}a}\right)$ .

