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Treewidth & Grid

Theorem (Undirected grid by Robertson & Seymour ’86)

For every k Ø 1 there exists t = f(k) such that every graph of treewidth
at least t contains a k ◊ k grid as a minor.

Theorem (Undirected grid by Chuzhoy & Tan ’21)

For every k Ø 1 there exists t = O(k9polylog(k)) such that every graph of
treewidth at least t contains a k ◊ k grid as a minor.

Theorem (Directed grid Kawarabayashi & Kreutzer ’15)

For every k Ø 1 there exists t = f(k) such that every directed graph of
directed treewidth at least t contains a k ◊ k directed grid as a minor.
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“Relaxed Grid” — Bramble

Definition

A directed bramble is a family of strongly connected subgraphs s.t.:

• every two subgraphs either intersect in a vertex, or

• the graph contains an arc from one to the other and an arc back.

• Order: min size of a vertex set

that intersects every element of

a bramble.

• Size: the number of its

elements.

• Congestion: max number of

elements that contain a single

vertex.

For any bramble:

size Æ order · congestion.
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“Relaxed Grid” — Bramble

Definition

A directed bramble is a family of strongly connected subgraphs s.t.:

• every two subgraphs either intersect in a vertex, or

• the graph contains an arc from one to the other and an arc back.

Theorem (MPRzS ’21)

For every k Ø 1 there exists t = O(k48 log13
k) such that every directed

graph of directed treewidth at least t contains a bramble of congestion at
most 8 and size at least k.
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Brambles — Undirected Graphs

k ◊ k grid contains a bramble of order k and size k
2
, but congestion k.

k ◊ k grid contains a bramble of congetion 2, order Ák/2Ë and size k.

Masa�ík, Pilipczuk, Rzπøewski, Sorge Constant Congestion Brambles in Directed Graphs 4 / 15

2-1

5×5grid
• o 8 • @:&.io#hV-ijrowi
•

column ; •:h-;:;T_

• @ 0 A @

Hog:÷6fg orders



History — Undirected Graphs

Theorem (Seymour, Thomas ’93)

Max order of a bramble is exactly its treewidth + 1.

Theorem (Grohe, Marx ’09 and Hatzel, Komosa, Pilipczuk, Sorge ’20)

There are classes of graphs where for each 0 < ” < 1/2 any bramble of
order �̃(k(0.5+”)) requires exponential size in k

2”.

For any bramble: size Æ order · congestion.

Masa�ík, Pilipczuk, Rzπøewski, Sorge Constant Congestion Brambles in Directed Graphs 5 / 15



History — Directed Graphs

Theorem (Reed ’99)

Max order of a bramble is up to constant factor its treewidth.

Theorem (Grohe, Marx ’09)

There are classes of graphs where for each 0 < ” < 1/2 any bramble of
order �̃(k(0.5+”)) requires exponential size in k

2”.

For any bramble: size Æ order · congestion.

Theorem (MPRzS ’21)

For every k Ø 1 there exists t = O(k48 log13
k) such that every directed

graph of directed treewidth at least t contains a bramble of congestion at
most 8 and size at least k.
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History — Directed Graphs

Theorem (MPRzS ’21)

For every k Ø 1 there exists t = O(k48 log13
k) such that every directed

graph of directed treewidth at least t contains a bramble of congestion at
most 8 and size at least k.

Directed grid give congestion 2 bramble of linear size.

Hence,

• Kawarabayashi and Kreutzer ’15 gives congestion 2 but small-sized

bramble.

• Half-integral grid (Kawarabayashi, Kobayashi, Kreutzer ’14) gives

congestion 4 but small-sized bramble.

• Planar graphs grid (Hatzel, Kawarabayashi, Kreutzer ’10) gives

congestion 2 polynomial bound on a bramble.
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Proof — Extracting a bramble (Dense case)

Lemma (Dense winning scenario)

Let cKT be the constant from Kostochka ’84. If a graph G contains a
family W of closed walks of congestion –, whose intersection graph is
not cKT · d ·

Ô
log d-degenerate, then G contains a bramble of

congestion – and size d.
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Proof — Starting Point

Definition (Path system)

Let a, b œ N. An (a, b)-path system (Pi, Ai, Bi)a
i=1 consists of

• vertex-disjoint paths P1, P2, . . . , Pa, and

• for every i œ [a], two sets Ai, Bi ™ V (Pi), each of size b, such that

every vertex of Bi appears on Pi later than all vertices of Ai,

such that
ta

i=1 Ai fi Bi is well-linked in G.

Kawarabayashi, Kreutzer ’15:

G has directed treewidth ca
2
b

2
∆ G contains (a, b)-path system.
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Proof — Extracting a bramble (Sparse case)

Lemma (Sparse winning scenario)

(Pi, Ai, Bi)a
i=1 be an (a, b)-path system, I ™ [a] ◊ [a] \ {(i, i) | i œ [a]},

s.t. |I| Ø 0.6 · a(a ≠ 1). The intersection graph of Li,j and LiÕ,jÕ for every
distinct (i, j), (iÕ

, j
Õ) œ I is d-degenerate. If b > 4 · e · a

2
· d, then G

contains a bramble of congestion at most 4 and size Ø c ·

1
a1/2

log1/4 a

2
.
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Proof — Reduction of the congestion

Definition (Threaded linkage)

A threaded linkage is a pair (W, L) where L = {L1, L2, . . . , L¸} is a

linkage and W is a walk such that there exist ¸ ≠ 1 paths Q1, Q2, . . . , Q¸≠1
such that W is the concatenation of L1, Q1, L2, Q2, . . . , Q¸≠1, L¸ in that

order. The paths Qi are called threads. A threaded linkage (W, L) for

W = (L1, Q1, . . . , Q¸≠1, L¸) is untangled if for every i, the thread Qi

may only intersect the rest of W in Li or Li+1.
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Proof — Reduction of the congestion

Lemma (Untangled threaded linkages)

Let (W, L) be a threaded linkage of size b and of overlap –. Let x, d œ N
such that b Ø xd + (d ≠ 1). Then one of the following exists:

1 A family Z of d closed walks, such that for every walk W œ Z there exists a
distinct path P (W ) œ L that is a subwalk of W , and Z has overlap –; or

2 an untangled threaded linkage (W Õ, LÕ) where W Õ is a subwalk W and LÕ ™ L is
of size at least x. In particular, (W Õ, LÕ) is of overlap –.
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Proof — Bowties

Lemma (Bowtie lemma)

Let (W1, L1) and (W2, L2) be two threaded linkages of overlap – and —,
such that the intersection graph I(L1, L2) of L1 and L2 is not
(29

· 5 · d)-degenerate. Then there is a family Z of d closed walks such
that every walk in Z contains at least one path of L1 and one path of
L2 as a subwalk, and the congestion of Z is at most – + —.
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Main Proof — Setup

Each vertex represent (Ai, Bj) linkage. Z ™ V be linkages s.t. untangled lemma

results in (1) outcome: a family of closed walks Z of overlap 3.

M1 be a maximum matching in H1 ≠ Z, where edges representes linkages with

intersection graph that is not d1-degenerate.

M2 be a maximum matching in graph (V, E(H2) \
!V (M1)fiZ

2
"
), where edges

representes linkages with intersection graph that is not d2-degenerate

Z V (M1) V \ (V (M1) [ Z)

V \ V (M2)

V (M2)
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Main Proof (Dense Case)

Z V (M1) V \ (V (M1) [ Z)

V \ V (M2)

V (M2)

Lemma (Dense winning scenario)

Let cKT be the constant from Kostochka ’84. If a graph G contains a
family W of closed walks of congestion –, whose intersection graph is
not cKT · d ·

Ô
log d-degenerate, then G contains a bramble of

congestion – and size d.
Masa�ík, Pilipczuk, Rzπøewski, Sorge Constant Congestion Brambles in Directed Graphs 13 / 15

grvntzngled
Zycongltnot←

untangled Écong4+
untangled 9 =8
+Bowtie lemma



Main Proof (Three Sparse Cases)

At least one of the following cases occurs:

Case 1. |V \ (V (M1) fi Z)| Ø 0.6|V |;

Case 2. |V (M1) fi V (M2) fi Z| Ø 0.6|V |;

Case 3. |V \ V (M2)| Ø 0.6|V |.

Z V (M1) V \ (V (M1) [ Z)

V \ V (M2)

V (M2)
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Main Proof (Three Sparse Cases) — Case 1.

|V \ (V (M1) fi Z)| Ø 0.6|V |

Z V (M1) V \ (V (M1) [ Z)

V \ V (M2)

V (M2)

Lemma (Sparse winning scenario)

(Pi, Ai, Bi)a
i=1 be an (a, b)-path system, I ™ [a] ◊ [a] \ {(i, i) | i œ [a]},

s.t. |I| Ø 0.6 · a(a ≠ 1). The intersection graph of Li,j and LiÕ,jÕ for every
distinct (i, j), (iÕ

, j
Õ) œ I is d-degenerate. If b > 4 · e · a

2
· d, then G

contains a bramble of congestion at most 4 and size Ø c ·

1
a1/2

log1/4 a

2
.
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