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Definitions Beyond MSO

Monadic Second Order Logic – MSO1

universe is a graph

variables for elements (vertices, edges) x,y

variables for sets of vertices X,Y

(∃R,G ,B) (R ∪ G ∪ B = V ) ∧ (∀u, v ∈ R → {u, v} /∈ E )

∧ (∀u, v ∈ G → {u, v} /∈ E )

∧ (∀u, v ∈ B → {u, v} /∈ E )

MSO2

adds a possibility for variables for sets of edges

model checking is hard on graphs of bounded neighborhood diversity
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Definitions Beyond MSO

Monadic Second Order Logic

Theorem (Courcelle)

There exists an algorithm that, given

an MSO formula ϕ, and

an n-vertex graph G with its tree decomposition of width t and
evaluation of all the free variables of ϕ,

verifies whether ϕ is satisfied in G in time f (|ϕ|, t) · n.

ϕ in prenex form

|ϕ| is the number of quantifiers in ϕ
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Definitions Beyond MSO

Extending MSO – Local Cardinality Constraints

linear optimization FPT(tw) [Arnborg, Lagergren and Seese 91]

further objectives FPT(tw) [Courcelle and Mosbah 93]

fair objective function XP(tw) [Kolman, Lidický and Sereni 09]

given MSO formula ϕ(X ) with a free vertex set variable X
minimizes maximum degree in the subgraph given by X

W[1]-hard(tw) FPT(nd) [Masǎŕık, Toufar 16]

minX⊆V maxv∈V
{
X (v) | ϕ(X )

}
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minX⊆V maxv∈V
{
X (v) | ϕ(X )

}

(∀v ∈ V ) (X (v) ∈ S(v)) ∧ ϕ(X )

(∀v ∈ V ) (X (v) ∈ [`(v), u(v)]) ∧ ϕ(X )MSOL
lin

(∀v ∈ V ) (X (v) ∈ S(v)) ∧ ϕ(X )MSOL
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Definitions Beyond MSO

Extending MSO – Global Cardinality Constraints

add a “global” relation [|X | ≥ |Y |2]

cardinality constraints FPT (nd) [Ganian, Obdržálek 11]

Equitable k-Coloring

Input: graph G = (V ,E )

Task: find a partition V1, . . . ,Vk of V such that G [Vi ] is an edgeless
graph and

∣∣|Vi | − |Vj |
∣∣ ≤ 1 or report that no such partition

exists

MSOG
lin only linear relations added |X | ≤ |Y |+ 7; |Y | = 2|X |

MSOG general relations added |X |2 + |Y |3 = |Z |

Indeed, we can combine all possible extensions!
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Definitions Neighborhood Diversity

Neighborhood Diversity

We say that two (distinct) vertices u, v are of the same neighborhood type
if they share their respective neighborhoods, that is when

N(u) \ {v} = N(v) \ {u}.

Definition (Lampis 12)

A graph G = (V ,E ) has neighborhood diversity at most w (nd(G ) ≤ w) if
there exists a partition of V into at most w sets such that all the vertices
in each set have the same neighborhood type.
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Our Results Neighborhood Diversity

Extending MSO – Our Results

nd, vc

MSO

MSOG
lin

MSOG

∅ fairMSO MSOL
lin MSOL

FPT, Lampis FPT, MT W[1]-h, ?

FPT, GO FPT, ?

W[1]-h, ? XP, ?

tw

MSO

MSOG
lin

MSOG

∅ fairMSO MSOL
lin MSOL

FPT, C W[1]-h, MT XP, Szeider

W[1]-h, GO

XP, ?
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Our Results Neighborhood Diversity

Vertex Cover – Hardness Reduction

k-Multicolored Clique Parameter: k

Input: k-partite graph G = (V1∪̇ · · · ∪̇Vk ,E ), where Va is an inde-
pendent set for every a ∈ [k].

Task: Find a clique of size k .

LCCSubset

Input: Graph G = (V ,E ) with |V | = n and a function f : V → 2[n].

Task: Find a set U ⊆ V such that for each vertex v ∈ V it holds
that |U(v)| ∈ f (v).

n
Sa

0
1

Incab

Iab

mN

T{a,b}

0

1

Mult{a,b}

{tN | t ∈ [m]}
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Our Results Neighborhood Diversity

Neighborhood Diversity – MSOGL
lin

let ϕ be a MSOG
lin formula with free set variables X1, . . . ,X`

ϕ contains qS set quantifiers and qe element quantifiers
let G = (V ,E ) be a graph with nd(G ) = ν with types T1, . . . ,Tν

Definition

Let µ : {X1, . . . ,X`} → 2V be a variable assignment. The signature of µ is
a mapping from Sµ : [ν]× 2[`] → N defined by Sµ(j , I ) =

∣∣⋂
i∈I µ(Xi ) ∩ Tj

∣∣.
Lemma (Lampis 12)

Suppose that µ, µ′ are two variable assignments such that for every
I ⊆ [`], j ∈ [ν] we have either

Sµ(j , I ) = Sµ′(j , I ), or

both Sµ(j , I ),Sµ′(j , I ) > 2qS · qe .

It follows that G , µ |= ϕ if and only if G , µ′ |= ϕ.
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Our Results Neighborhood Diversity

Neighborhood Diversity – MSOGL
lin

Global Constraints guess all possible pre-evaluation (f (|ϕ|))

Local Constraints make uniform and refine the decomposition

check whether it is realizable (within linear bounds)

Theorem (Lenstra 83, Frank&Tardos 87)

Let p be the number of integral variables in a (mixed) integer linear
program and let L be the number of bits needed to encode the program.
Then it is possible to find an optimal solution in time O

(
p2.5p poly(L)

)
.
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DK, M. Koutecký, T. Masǎŕık, T. Toufar Beyond MSO WG 2017 11 / 14



Our Results Neighborhood Diversity

Neighborhood Diversity – MSOGL
lin

Global Constraints guess all possible pre-evaluation (f (|ϕ|))

Local Constraints make uniform and refine the decomposition

check whether it is realizable (within linear bounds)

Theorem (Lenstra 83, Frank&Tardos 87)

Let p be the number of integral variables in a (mixed) integer linear
program and let L be the number of bits needed to encode the program.
Then it is possible to find an optimal solution in time O

(
p2.5p poly(L)

)
.
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Our Results Treewidth

Extending MSO – Our Results
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Our Results Treewidth

Treewidth

1 Using a result of Kolman, Koutecký and Tiwary 15 we construct a
linear program of bounded treewidth whose integer solutions
correspond to feasible assignments of ϕ.

2 We view this LP as an ILP and construct an equivalent constraint
satisfaction problem instance J ′ of bounded treewidth.

3 Our CSP have two types of constraints hard (H′) and soft (S).

4 We show that if H′ and S have the local scope property (the scope of
all constraints is restricted to variables corresponding to the
descendants of some node of the treedecomposition), it is possible to
add new constraints derived from H′ and S to instance J ′ which
results in instance J, such that J is an extension of I .
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Conclusions

Conclusions

Open problems:

what further extensions of MSO admit an FPT algorithm on graphs
with bounded neighborhood diversity

what extensions of MSO admit an FPT algorithm on graphs with
bounded ? ? ? (generalizing neighborhood diversity)

Thank you!
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