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Gyárfás-Sumner conjecture

‰-bounding

We say that a graph H is ‰-bounding if ÷ a function f s.t. ’ H-free graph G:

‰(G) Æ f(Ê(G)).

Conjecture (The Gyárfás-Sumner conjecture 1975≥81)

Every forest is ‰-bounding.

Erd�s 1959: Every ‰-bounding graph is a forests.

Scott and Seymour 2020: A survey of ‰-boundedness.
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What about digraphs?

‰-bounding

We say that a digraph H is ‰-bounding if ÷ a function f s.t. ’ H-free digraph G:

‰(G) Æ f(Ê(G)).

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is ‰-bounding.
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What about digraphs?

‰-bounding

We say that a digraph H is ‰-bounding if ÷ a function f s.t. ’ H-free digraph G:

‰(G) Æ f(Ê(G)).

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is ‰-bounding.

NO if H = ≠æ
P4 Kierstead & Trotter 1991, or

NO if H = ≠æ
A4 Gyárfás 1990

NO if H contains a digon

NO if G contains a digon (while H nontrivial)
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What about digraphs?

‰-bounding

We say that an oriented (or)graph H is ‰-bounding if ÷ a function f s.t. ’ H-free orgraph G:

‰(G) Æ f(Ê(G)).

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is ‰-bounding.
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What about digraphs?

‰-bounding

We say that an orgraph H is ‰-bounding if ÷ a function f s.t. ’ H-free orgraph G:

‰(G) Æ f(Ê(G)).
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What about orgraphs? Let’s use dichromatic number.

Definition (dichromatic number)

The dichromatic number of D, denoted as ≠æ
‰ (D), is the minimum number of colors needed

for a dicoloring of D.

≠æ‰ -bounding

We say that an orgraph H is ≠æ
‰ -bounding if ÷ a function f s.t. ’ H-free orgraph G:

≠æ
‰ (G) Æ f(Ê(G)).

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is ≠æ
‰ -bounding.
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What about orgraphs? Let’s use dichromatic number.

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is ≠æ
‰ -bounding.

Harutyunyan and Mohar 2012: Every ≠æ
‰ -bounding graph is a forests.

In particular, NO digons are allowed.
Chudnovsky, Scott & Seymour 2019 showed that æΩΩ, ΩΩæ, and oriented stars are
even ‰-bounding. Let T be any fixed orientation of K3. Aboulker, Charbit & Naserasr

2021: (T,
≠æ
P4)-free has bounded

≠æ
‰ .

Let Kt denote the transitive tournament on t vertices. Steiner 2021: (K3,
≠æ
A4)-free oriented

graphs has bounded
≠æ
‰ .
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What about orgraphs? Let’s use dichromatic number.

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is ≠æ
‰ -bounding.

Chudnovsky, Scott & Seymour 2019 showed that æΩΩ, ΩΩæ, and oriented stars are
even ‰-bounding.
Aboulker, Charbit & Naserasr 2021: (T,

≠æ
P4)-free has bounded

≠æ
‰ .

Steiner 2021: (K3,
≠æ
A4)-free oriented graphs has bounded

≠æ
‰ .

Theorem (CMPRS 2022+)

Let H be an oriented P4. Then, the class of H-free orgraphs is ≠æ
‰ -bounded.

In particular, for any H-free orgraph D,
≠æ
‰ (D) Æ (Ê(D) + 7)(Ê(D)+8.5)

.
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Proof sketch—Dipolar set

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset S ™ V (D) that can be partitioned into
S

+
, S

≠ such that no vertex in S
+ has an out-neighbor in V (D \ S) and no vertex in S

≠ has
an in-neighbor in V (D \ S).
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Proof sketch—Dipolar set

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset S ™ V (D) that can be partitioned into
S

+
, S

≠ such that no vertex in S
+ has an out-neighbor in V (D \ S) and no vertex in S

≠ has
an in-neighbor in V (D \ S).

Lemma (Aboulker, Charbit & Naserasr 2021)

Let D be a family of orgraphs closed under taking induced subgraphs. Suppose there
exists a constant c such that every D œ D has a dipolar set S with ≠æ

‰ (S) Æ c. Then every
D œ D satisfies ≠æ

‰ (D) Æ 2c.
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):
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Proof sketch—Finding a dipolar set and the strongly connected case

If G contains strongly connected tournament of size Ê(G):

Lemma (Aboulker, Charbit & Naserasr 2021)

Let D be a family of orgraphs closed under taking induced subgraphs. Suppose there
exists a constant c such that every D œ D has a dipolar set S with ≠æ

‰ (S) Æ c. Then every
D œ D satisfies ≠æ

‰ (D) Æ 2c.
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Proof sketch—A hint for the other case

If G does not contain a strongly connected tournament of size Ê(G):
Consider a tournament T together with a shortest path P making it strongly connceted.
Take the one where P is the shortest.
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Proof sketch—A hint for the other case

If G does not contain a strongly connected tournament of size Ê(G):
Consider a tournament T together with a shortest path P making it strongly connceted.
Take the one where P is the shortest.
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Open directions

Polynomial
≠æ‰ -boundedness

Is any oriented P4 polynomially ≠æ
‰ -bounding?
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Open directions

Polynomial
≠æ‰ -boundedness

Is any oriented P4 polynomially ≠æ
‰ -bounding?

Aboulker, Aubian, Charbit & Thomassé 2022: (T,
≠æ
P6)-free has bounded

≠æ
‰ .

Next step

Is oriented P5
≠æ
‰ -bounding?
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Open directions

Polynomial
≠æ‰ -boundedness

Is any oriented P4 polynomially ≠æ
‰ -bounding?

Aboulker, Aubian, Charbit & Thomassé 2022: (T,
≠æ
P6)-free has bounded

≠æ
‰ .

Next step

Is oriented P5
≠æ
‰ -bounding?

Thank you!
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