Proving a directed analogue of the Gyárfás-Sumner conjecture for orientations of P_4

Linda Cook, Tomáš Masařík, Marcin Pilipczuk, Amadeus Reinald, Uéverton S. Souza

University of Warsaw, Poland

Dagstuhl seminar 22481 Dagstuhl 2022

χ -bounding

We say that a graph H is χ -bounding if \exists a function f s.t. \forall H-free graph G:

 $\chi(G) \le f(\omega(G)).$

Conjecture (The Gyárfás-Sumner conjecture 1975~81)

Every forest is χ -bounding.

Erdős 1959: Every χ -bounding graph is a forests.

Scott and Seymour 2020: A survey of χ -boundedness.

No Induced subgraph H in G

χ -bounding

We say that a digraph H is χ -bounding if \exists a function f s.t. \forall H-free digraph G:

 $\chi(G) \le f(\boldsymbol{\omega}(G)).$

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is χ -bounding.

χ -bounding

We say that a digraph H is χ -bounding if \exists a function f s.t. \forall H-free digraph G:

 $\chi(G) \le f(\boldsymbol{\omega}(G)).$

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is χ -bounding.

NO if $H = \overrightarrow{P_4}$ Kierstead & Trotter 1991, or **NO** if $H = \overrightarrow{A_4}$ Gyárfás 1990

NO if *H* contains a **digon NO** if *G* contains a **digon** (while *H* nontrivial)

Imaxclique size of underlying graph

χ -bounding

We say that an oriented (or)graph H is χ -bounding if \exists a function f s.t. \forall H-free orgraph G:

 $\chi(G) \le f(\omega(G)).$

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is χ -bounding.

χ -bounding

We say that an orgraph H is χ -bounding if \exists a function f s.t. \forall H-free orgraph G:

 $\chi(G) \leq f(\omega(G)).$

Tomáš Masařík 08/26/2022 10:34 AM Ok good. What do you think about orgraph?

χ -bounding

We say that an orgraph H is χ -bounding if \exists a function f s.t. \forall H-free orgraph G:

 $\chi(G) \leq f(\omega(G)).$

Conjecture (Directed Gyárfás-Sumner?)

Every oriented forest is χ -bounding.

NO if $H = \overrightarrow{P_4}$ Kierstead & Trotter 1991, or **NO** if $H = \overrightarrow{A_4}$ Gyárfás 1990

What about orgraphs? Let's use dichromatic number.

Definition (dichromatic number)

The dichromatic number of D, denoted as $\overrightarrow{\chi}(D)$, is the minimum number of colors needed for a dicoloring of D. $\int Partition of vertices st. there is No directed cycles in any Part (color).$

$\overrightarrow{\chi}$ -bounding

We say that an orgraph H is $\overrightarrow{\chi}$ -bounding if \exists a function f s.t. \forall H-free orgraph G:

 $\overrightarrow{\chi}(G) \leq f(\omega(G)).$

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is $\overrightarrow{\chi}$ -bounding.

What about orgraphs? Let's use dichromatic number.

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is $\overrightarrow{\chi}$ -bounding.

Harutyunyan and Mohar 2012: Every $\vec{\chi}$ -bounding graph is a forests. In particular, **NO digons** are allowed.

Chudnovsky, Scott & Seymour 2019 showed that $\rightarrow \leftarrow \leftarrow$, $\leftarrow \leftarrow \rightarrow$, and oriented stars are even χ -bounding. Let T be any fixed orientation of K_3 . Aboulker, Charbit & Naserasr 2021: $(T, \overrightarrow{P_4})$ -free has bounded $\overrightarrow{\chi}$.

Let K_t denote the transitive tournament on t vertices. Steiner 2021: $(K_3, \overrightarrow{A_4})$ -free oriented graphs has bounded $\overrightarrow{\chi}$.

What about orgraphs? Let's use dichromatic number.

Conjecture (Aboulker, Charbit & Naserasr 2021)

Every orientation of a forest is $\overrightarrow{\chi}$ -bounding.

Chudnovsky, Scott & Seymour 2019 showed that $\rightarrow \leftarrow \leftarrow$, $\leftarrow \leftarrow \rightarrow$, and oriented stars are even χ -bounding.

Aboulker, Charbit & Naserasr 2021: $(T, \overrightarrow{P_4})$ -free has bounded $\overrightarrow{\chi}$.

Steiner 2021: $(K_3, \overrightarrow{A_4})$ -free oriented graphs has **bounded** $\overrightarrow{\chi}$.

Theorem (CMPRS 2022+)

Let H be an oriented P_4 . Then, the class of H-free orgraphs is $\overrightarrow{\chi}$ -bounded. In particular, for any H-free orgraph D,

$$\overrightarrow{\chi}(D) \le (\omega(D) + 7)^{(\omega(D) + 8.5)}$$

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an **in-neighbor** in $V(D \setminus S)$.

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an **in-neighbor** in $V(D \setminus S)$.

Lemma (Aboulker, Charbit & Naserasr 2021)

Let \mathcal{D} be a family of orgraphs closed under taking induced subgraphs. Suppose there exists a constant c such that every $D \in \mathcal{D}$ has a dipolar set S with $\vec{\chi}(S) \leq c$. Then every $D \in \mathcal{D}$ satisfies $\vec{\chi}(D) \leq 2c$.

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an in-neighbor in $V(D \setminus S)$.

Directed analogue of the Gyárfás-Sumner conjecture for orientations of P_4 5 / 8

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an **in-neighbor** in $V(D \setminus S)$.

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an **in-neighbor** in $V(D \setminus S)$.

Definition (dipolar set Aboulker, Charbit & Naserasr 2021)

A dipolar set of an orgraph D is a nonempty subset $S \subseteq V(D)$ that can be partitioned into S^+, S^- such that no vertex in S^+ has an **out-neighbor in** $V(D \setminus S)$ and no vertex in S^- has an **in-neighbor** in $V(D \setminus S)$.

Lemma (Aboulker, Charbit & Naserasr 2021)

Let \mathcal{D} be a family of orgraphs closed under taking induced subgraphs. Suppose there exists a constant c such that every $D \in \mathcal{D}$ has a dipolar set S with $\vec{\chi}(S) \leq c$. Then every $D \in \mathcal{D}$ satisfies $\vec{\chi}(D) \leq 2c$.

 $\exists P_{2'} = P_{2} \notin N(x) \wedge q_{2} \in N(x)$ $(P_{2}, q_{2}) \in Arcs$ Z $G^{U}(CUXUZUY)$

If G contains strongly connected tournament of size $\omega(G)$:

Lemma (Aboulker, Charbit & Naserasr 2021)

Let \mathcal{D} be a family of orgraphs closed under taking induced subgraphs. Suppose there exists a constant c such that every $D \in \mathcal{D}$ has a dipolar set S with $\overrightarrow{\chi}(S) \leq c$. Then every $D \in \mathcal{D}$ satisfies $\overrightarrow{\chi}(D) \leq 2c$.

If G does not contain a strongly connected tournament of size $\omega(G)$:

Consider a tournament T together with a shortest path P making it strongly connceted. Take the one where P is the shortest.

If G does not contain a strongly connected tournament of size $\omega(G)$:

Consider a tournament T together with a shortest path P making it strongly connceted. Take the one where P is the shortest.

If G does not contain a strongly connected tournament of size $\omega(G)$:

Consider a tournament T together with a shortest path P making it strongly connceted. Take the one where P is the shortest.

Open directions

Polynomial $\overrightarrow{\chi}$ -boundedness

Is any oriented P_4 polynomially $\overrightarrow{\chi}$ -bounding?

Open directions

Polynomial $\vec{\chi}$ -boundedness Is any oriented P_4 polynomially $\vec{\chi}$ -bounding?

Aboulker, Aubian, Charbit & Thomassé 2022: $(T, \overrightarrow{P_6})$ -free has bounded $\overrightarrow{\chi}$.

Next step Is oriented $P_5 \overrightarrow{\chi}$ -bounding?

Open directions

Polynomial $\vec{\chi}$ -boundedness Is any oriented P_4 polynomially $\vec{\chi}$ -bounding?

Aboulker, Aubian, Charbit & Thomassé 2022: $(T, \overrightarrow{P_6})$ -free has bounded $\overrightarrow{\chi}$.

Next step Is oriented $P_5 \overrightarrow{\chi}$ -bounding?

Thank you!