Max Weight Independent Set in Graphs with no Long Claws: An Analog of the Gyárfás' Path Argument

Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski

University of Warsaw, Poland

MIMUW Algorithms Seminar 2022

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{R}$. The **MWIS** problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{R}$. The **MWIS** problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden subgraphs.

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{R}$. The **MWIS** problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden twice sublivided subgraph.

For **one** forbidden subgraph H ('82 Alekseev):

- Subdividing strategy proves NP-completeness when H is not a forest or have two degree-three vertices. A connected
- NP-complete when *H* does have more than three leaves.

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let $\mathfrak{w}: V(G) \to \mathbb{R}$. The **MWIS** problem asks for a set $I \subseteq V(G)$ s.t. G[I] is edgeless and $\mathfrak{w}(I)$ is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden subgraph.

- For **one** forbidden subgraph H ('82 Alekseev):
 - Subdividing strategy proves NP-completeness when *H* is **not** a **forest** or **have two degree-three vertices**.
 - NP-complete when *H* does have more than three leaves.

Let $S_{t,t,t}$ be a t-1 times subdivided claw.

>4444

Positive Results for MWIS

- '19 Grzesik, Klimošová, Pilipczuk, Pilipczuk
 → Polynomial on P₆-free graphs
- **20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé** → QPTAS, subexp. on S_{t,t,t}-free graphs
- '20 Gartland, Lokshtanov & '21 Pilipczuk, Pilipczuk, Rzążewski
 ~> Quasi-polynomial on Pt-free graphs
- '21 Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzążewski
 → Quasi-polynomial on C≥t-free graphs
- 22 Abrishami, Chudnovsky, Dibek, and Rzążewski
 → Polynomial on S_{t,t,t}-free graphs of bounded degree

Gyárfás Path

Gyárfás Path

Theorem (Gyárfás '75)

Given an *n*-vertex graph G, one can in polynomial time find an **induced** path Q in G such that every connected component of G - N[V(Q)] has at most n/2 vertices.

The Three-in-a-tree Theorem

Theorem ('10 Chudnovsky, Seymour)

Let G be an n-vertex graph and consider $Z \subseteq V(G)$ with $|Z| \ge 2$. There is an algorithm that runs in time $\mathcal{O}(n^5)$ and returns one of the following:

- an induced subtree of G containing at least three elements of Z,
- an e.s.d. (H,η) of (G,Z).

Our Result — Gyárfás' Path Analog for $S_{t,t,t}$ -free Graphs

Theorem ('22 KM, TM, JN, KO, MP, PRz, MS)

Given an *n*-vertex graph G and $t \ge 1$, one can in polynomial time either:

- output an induced copy of $S_{t,t,t}$ in G, or
- output a set \mathcal{P} consisting of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and a rigid e.s.d. of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has at most n/2 vertices.

Our Result — Gyárfás' Path Analog for $S_{t,t,t}$ -free Graphs

Theorem ('22 KM, TM, JN, KO, MP, PRz, MS)

Given an *n*-vertex graph G and $t \ge 1$, one can in polynomial time either:

- output an induced copy of $S_{t,t,t}$ in G, or
- output a set \mathcal{P} consisting of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and a rigid e.s.d. of $G N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has at most n/2 vertices.

Applications

- Subexponential algorithm: in time exponential in $\mathcal{O}(\sqrt{n}\log n)$ for MWIS.
- QPTAS: in time exponential in $\mathcal{O}(\varepsilon^{-1}\log^5 n)$ we obtain $(1-\varepsilon)$ -approximation for MWIS.

Proof

Lemma (Recursive formulation)

Fixed \underline{N} Given: graph G; set \underline{Q} of at most two induced paths; refined e.s.d. of $G - N[\bigcup \underline{Q}]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or
- $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t + 1 vertices.

Theorem ('22 KM, TM, JN, KO, MP, PRz, MS)

Given an *n*-vertex graph G and $t \ge 1$, one can in polynomial time either:

- output an induced copy of $S_{t,t,t}$ in G, or
- output a set \mathcal{P} consisting of at most $11 \log n + 6$ induced paths in G, each of length at most t + 1, and a rigid e.s.d. of $\mathcal{AICFined}$ $G - N[\bigcup_{P \in \mathcal{P}} V(P)]$ whose every particle has at most n/2 vertices.

Proof

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of $G - N[\bigcup Q]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or
- $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t + 1 vertices.

Initialization

- Q consist of Gyárfás path in G.
- Hence, $G N[\bigcup Q]$ is refined e.s.d.

connected Components of size < 1

Proof—First Base Case

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of $G - N[\bigcup Q]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t+1 vertices.

The longest path in Q has at most 3t + 1 vertices.

X:=NTUPT We return $\mathcal{P} := \mathcal{Q}$ and e.s.d. given at the input. 2++2 ++1

Use of Tree-in-a-tree Theorem

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of $G - N[\bigcup Q]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or
- $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t + 1 vertices.

Three-in-a-tree theorem returned a refined e.s.d.

We return $\mathcal{P} := \operatorname{pref}(\mathcal{S})$, $X := \operatorname{shell}(\mathcal{S})$ and the refined e.s.d.

Tree-in-a-tree Theorem Retured Large Particle

Tree-in-a-tree Theorem Retured Large Particle

Tree-in-a-tree Theorem Retured Large Particle

Theorem ('20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé)

Let (H, η) be an e.s.d. of G. Suppose P_1, P_2, P_3 are three induced paths in G that do not **touch** each other, and moreover each of P_1, P_2, P_3 has an endvertex that is **peripheral** in (H, η) . Then in (H, η) there is **NO** particle that touches each of P_1, P_2, P_3 .

Theorem ('20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé)

Let (H, η) be an e.s.d. of G. Suppose P_1, P_2, P_3 are three induced paths in G that do not **touch** each other, and moreover each of P_1, P_2, P_3 has an endvertex that is **peripheral** in (H, η) . Then in (H, η) there is **NO** particle that touches each of P_1, P_2, P_3 .

We recurse on particle A with at most two touching paths.

- A can be separated by two vertices, denoted as \mathcal{P}' $(X' := N[\bigcup \mathcal{P}'] A)$
- $|\bigcup Q|$ drops by at least 2/3!

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of $G - N[\bigcup Q]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or
- $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t + 1 vertices.

We recurse on particle A with at most two touching paths.

- A can be separated by two vertices, denoted as $\mathcal{P}'(X' := N[\bigcup \mathcal{P}'] A)$
- $|\bigcup Q|$ drops by at least 2/3!

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of $G - N[\bigcup Q]$. In polynomial time, we output one of the following:

- an induced copy of $S_{t,t,t}$ in G, or
- $\mathcal{P}, X \subseteq N[\bigcup \mathcal{P}]$, and a refined e.s.d. $(G X, \eta)$, so that $|\mathcal{P}| \leq 6 \log_{3/2} (|\bigcup \mathcal{Q}|) + 6$ and the longest path in \mathcal{P} has at most t + 1 vertices.

We recurse on particle A with at most two touching paths.

- A can be separated by two vertices, denoted as $\mathcal{P}'(X' := N[\bigcup \mathcal{P}'] A)$
- $|\bigcup \mathcal{Q}|$ drops by at (least 2/3!

Let $\hat{\mathcal{P}}, \hat{X}$ and refined e.s.d. be obtained from the recursion. We return $\mathcal{P} := \hat{\mathcal{P}} \cup \mathcal{P}' \cup \operatorname{pref}(\mathcal{S}), X := \hat{X} \cup X' \cup \operatorname{shell}(\mathcal{S}), \ldots$

Let $\hat{\mathcal{P}}, \hat{X}$ and refined e.s.d. be obtained from the recursion. We return $\mathcal{P} := \hat{\mathcal{P}} \cup \mathcal{P}' \cup \operatorname{pref}(\mathcal{S}), X := \hat{X} \cup X' \cup \operatorname{shell}(\mathcal{S})$, e.s.d.

Open Problems

Conjecture ('22 KM, TM, JN, KO, MP, PRz, MS)

For every integer $t \ge 1$ there exists a constant $\varepsilon > 0$ and an integer s such that every $S_{t,t,t}$ -free graph Gadmits a set $P \subseteq V(G)$ of size at most ssuch that G - N[P] admits an e.s.d. whose every particle has at most $(1 - \varepsilon)|V(G)|$ vertices.

'22 Abrishami, Chudnovsky, Dibek, and Rzążewski \rightsquigarrow MWIS Polynomial $S_{t,t,t}$ -free graphs of bounded degree

Open Problems

Conjecture ('22 KM, TM, JN, KO, MP, PRz, MS)

For every integer $t \ge 1$ there exists a constant $\varepsilon > 0$ and an integer s such that every $S_{t,t,t}$ -free graph Gadmits a set $P \subseteq V(G)$ of size at most ssuch that G - N[P] admits an e.s.d. whose every particle has at most $(1 - \varepsilon)|V(G)|$ vertices.

'22 Abrishami, Chudnovsky, Dibek, and Rzążewski \rightsquigarrow MWIS Polynomial $S_{t,t,t}$ -free graphs of bounded degree

Thank you!