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Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V (G) æ R. The MWIS problem asks for a
set I ™ V (G) s.t. G[I] is edgeless and w(I) is as large as possible.
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Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V (G) æ R. The MWIS problem asks for a
set I ™ V (G) s.t. G[I] is edgeless and w(I) is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden
subgraph.

KM, TM, JN, KO, MP, PRz, MS Max Weight Independent Set in St,t,t-free Graphs 2 / 14

5.

:É÷T# Et:# Ei:-#
CE NOT Induced subgraph Induced

subgraph off 68
off 8

•-0-0-00

:÷÷= ¥=→
PH NOT Py - Free



Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V (G) æ R. The MWIS problem asks for a
set I ™ V (G) s.t. G[I] is edgeless and w(I) is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden
subgraph.

For one forbidden subgraph H (’82 Alekseev):
• Subdividing strategy proves NP-completeness when H is not a forest

or have two degree-three vertices.
• NP-complete when H does have more than three leaves.
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Max Weight Independent Set Problem

Definition (Max Weight Independent Set (MWIS))

Let G be a graph and let w : V (G) æ R. The MWIS problem asks for a
set I ™ V (G) s.t. G[I] is edgeless and w(I) is as large as possible.

Hereditary graphs: Characterized by a collection of induced forbidden
subgraph.

For one forbidden subgraph H (’82 Alekseev):
• Subdividing strategy proves NP-completeness when H is not a forest

or have two degree-three vertices.
• NP-complete when H does have more than three leaves.

Let St,t,t be a t ≠ 1 times subdivided claw.
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Positive Results for MWIS

• ’19 Grzesik, Klimoöová, Pilipczuk, Pilipczuk

 Polynomial on P6-free graphs
• ’20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé

 QPTAS, subexp. on St,t,t-free graphs
• ’20 Gartland, Lokshtanov & ’21 Pilipczuk, Pilipczuk, Rzπøewski

 Quasi-polynomial on Pt-free graphs
• ’21 Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzπøewski

 Quasi-polynomial on CØt-free graphs
• ’22 Abrishami, Chudnovsky, Dibek, and Rzπøewski

 Polynomial on St,t,t-free graphs of bounded degree
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Gyárfás Path
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Gyárfás Path

Theorem (Gyárfás ’75)

Given an n-vertex graph G, one can in polynomial time find an induced

path Q in G such that every connected component of G ≠ N [V (Q)] has
at most n/2 vertices.
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The Three-in-a-tree Theorem

Theorem (’10 Chudnovsky, Seymour)

Let G be an n-vertex graph and consider Z ™ V (G) with |Z| Ø 2. There
is an algorithm that runs in time O(n5) and returns one of the following:

• an induced subtree of G containing at least three elements of Z,
• an e.s.d. (H, ÷) of (G, Z).
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Our Result — Gyárfás’ Path Analog for St,t,t-free Graphs

Theorem (’22 KM, TM, JN, KO, MP, PRz, MS)

Given an n-vertex graph G and t Ø 1, one can in polynomial time either:
• output an induced copy of St,t,t in G, or
• output a set P consisting of at most 11 log n + 6 induced paths in

G, each of length at most t + 1, and a rigid e.s.d. of

G ≠ N [tP œP V (P )] whose every particle has at most n/2 vertices.
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Our Result — Gyárfás’ Path Analog for St,t,t-free Graphs

Theorem (’22 KM, TM, JN, KO, MP, PRz, MS)

Given an n-vertex graph G and t Ø 1, one can in polynomial time either:
• output an induced copy of St,t,t in G, or
• output a set P consisting of at most 11 log n + 6 induced paths in

G, each of length at most t + 1, and a rigid e.s.d. of

G ≠ N [tP œP V (P )] whose every particle has at most n/2 vertices.

Applications

• Subexponential algorithm: in time exponential in O(Ôn log n) for
MWIS.

• QPTAS: in time exponential in O(Á≠1 log5
n) we obtain

(1 ≠ Á)-approximation for MWIS.
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Proof

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

Theorem (’22 KM, TM, JN, KO, MP, PRz, MS)

Given an n-vertex graph G and t Ø 1, one can in polynomial time either:
• output an induced copy of St,t,t in G, or
• output a set P consisting of at most 11 log n + 6 induced paths in

G, each of length at most t + 1, and a rigid e.s.d. of

G ≠ N [tP œP V (P )] whose every particle has at most n/2 vertices.
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Proof

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

Initialization

• Q consist of Gyárfás path in G.
• Hence, G ≠ N [t Q] is refined e.s.d.
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Proof—First Base Case

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

The longest path in Q has at most 3t + 1 vertices.

We return P := Q and e.s.d. given at the input.
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Pref and Shell Definitions

pref(Q1
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shell(P ) := N [pref(P )] otherwise.
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Use of Tree-in-a-tree Theorem
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Use of Tree-in-a-tree Theorem
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Proof—Second Base Case

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

Three-in-a-tree theorem returned a refined e.s.d.

We return P := pref(S), X := shell(S) and the refined e.s.d.
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Tree-in-a-tree Theorem Retured Large Particle
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Tree-in-a-tree Theorem Retured Large Particle
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Tree-in-a-tree Theorem Retured Large Particle

Theorem (’20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé)

Let (H, ÷) be an e.s.d. of G. Suppose P1, P2, P3 are three induced paths
in G that do not touch each other, and moreover each of P1, P2, P3 has
an endvertex that is peripheral in (H, ÷). Then in (H, ÷) there is NO

particle that touches each of P1, P2, P3.
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Tree-in-a-tree Theorem Retured Large Particle

Theorem (’20 Chudnovsky, Pilipczuk, Pilipczuk, Thomassé)

Let (H, ÷) be an e.s.d. of G. Suppose P1, P2, P3 are three induced paths
in G that do not touch each other, and moreover each of P1, P2, P3 has
an endvertex that is peripheral in (H, ÷). Then in (H, ÷) there is NO

particle that touches each of P1, P2, P3.
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Proof—Recursive Step

We recurse on particle A with at most two touching paths.

• A can be separated by two vertices, denoted as P
Õ (X Õ := N [

t
P Õ] ≠ A)

• |
t

Q| drops by at least 2/3!
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Proof—Recursive Step

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

We recurse on particle A with at most two touching paths.

• A can be separated by two vertices, denoted as P
Õ (X Õ := N [

t
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• |
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Q| drops by at least 2/3!
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Proof—Recursive Step

Lemma (Recursive formulation)

Given: graph G; set Q of at most two induced paths; refined e.s.d. of

G ≠ N [t Q]. In polynomial time, we output one of the following:
• an induced copy of St,t,t in G, or
• P, X ™ N [t P], and a refined e.s.d. (G ≠ X, ÷), so that

|P| Æ 6 log3/2 (|t Q|) + 6 and the longest path in P has at most
t + 1 vertices.

We recurse on particle A with at most two touching paths.

• A can be separated by two vertices, denoted as P
Õ (X Õ := N [

t
P Õ] ≠ A)

• |
t

Q| drops by at least 2/3!

Let P̂ , X̂ and refined e.s.d. be obtained from the recursion.

We return P := P̂ fi P
Õ
fi pref(S), X := X̂ fi X

Õ
fi shell(S), . . .
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Proof—Recursive Step

Let P̂ , X̂ and refined e.s.d. be obtained from the recursion.

We return P := P̂ fi P
Õ
fi pref(S), X := X̂ fi X

Õ
fi shell(S), e.s.d.
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Open Problems

Conjecture (’22 KM, TM, JN, KO, MP, PRz, MS)

For every integer t Ø 1 there exists a constant Á > 0 and an integer s such
that every St,t,t-free graph G

admits a set P ™ V (G) of size at most s

such that G ≠ N [P ] admits an e.s.d. whose every particle has at most

(1 ≠ Á)|V (G)| vertices.

’22 Abrishami, Chudnovsky, Dibek, and Rzπøewski

 MWIS Polynomial St,t,t-free graphs of bounded degree
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Open Problems

Conjecture (’22 KM, TM, JN, KO, MP, PRz, MS)

For every integer t Ø 1 there exists a constant Á > 0 and an integer s such
that every St,t,t-free graph G

admits a set P ™ V (G) of size at most s

such that G ≠ N [P ] admits an e.s.d. whose every particle has at most

(1 ≠ Á)|V (G)| vertices.

’22 Abrishami, Chudnovsky, Dibek, and Rzπøewski

 MWIS Polynomial St,t,t-free graphs of bounded degree

Thank you!
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