
DOCTORAL THESIS

RNDr. Tomáš Masařík

Variants of graph labeling problems

Department of Applied Mathematics

Supervisor of the doctoral thesis: doc. RNDr. Jiří Fiala, Ph.D.
Study programme: Informatics

Study branch: Discrete Models and Algorithms (4I4)

Prague 2019

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague on June 23, 2019 signature of the author

i

ii

Dedication. My first thanks go to Jiří Fiala, my supervisor and mentor. He
has always encouraged me to work independently and he gave me a lot of freedom
which was essential for me. Moreover, he was always keen on helping me whenever
I needed and he gave me several opportunities to meet and work with great
researchers in my field.

At the beginning of my PhD studies, I collaborated mostly with my friends
who were or still are students. We had lots of fun together not only during work.
I wrote many papers together with Dušan Knop, including my first paper that
was based on my diploma thesis. Tomáš Toufar, even though he suddenly decided
not to contact any of us again (maybe any more), influenced me a lot and I
am glad I can mention him here. I have in mind nice memories spent together
with Pavel “Koblich” Dvořák. Jana Novotná, who is the only person mentioned
here twice, was very nice to work with. Also, I enjoyed working with all the
others that time students from Prague group: Radek Hušek, Martin Koutecký,
Jan Musílek, Veronika Slívová, Pavel Veselý, and many others. I always like a
friendly working environment at Charles in Prague. I took pleasure in working
with Milan Hladík, Terka Klimošová, Ondra Pangrác, and Andreas Feldmann.
It was an invaluable experience to work with Zdeněk Dvořák who influenced my
future research directions significantly.

Later in my studies, I met and worked with several important researchers
abroad that formed my research greatly. Large impact on me had Mike Fellows,
who showed me that one should focus on a great story and new ideas and not
just on problem-solving. It was a great pleasure to collaborate with him and his
group in Bergen: Fran Rosamond, Lars Jaffke, and Mateus Oliveira de Oliveira,
during my half-year stay in Norway. I also met there Geevarghese Philip, who
was always in good mood. Later, I met Marcin Pilipczuk, who offered me an
internship in Poland which I enjoyed so much that I stayed there for over a year in
a very friendly atmosphere. It is a pleasure to work with him, Manuel Sorge, and
Irene Muzi in Warsaw. I am very happy that Paweł Rzążewski in not only a great
collaborator but also a good friend. I am glad that I had an opportunity to work
with Daniël Paulusma and to enjoy his hospitality in Durham. Great impact on
me had my “academic brother” Bernard Lidický who always gave me good advice
whenever I needed it. I wish to mention a pleasant working and kind atmosphere
of GRWC workshop. In particular, a friendly approach of all the organizers.

I thank also to all of my other collaborators and all the other researchers I
met and have not mentioned here. I appreciate our discussions, research, and also
fun we had together.

Last but not least, I would like to thank my family for their support. Most
importantly to Jana Novotná, who helped me and supported me in my research
even though it was sometimes difficult. It is an interesting experience to do
research together in a relationship and I am very glad about it.

In memoriam of our friend Petr Bradshaw, who died suddenly at
our home during the time I was finishing this thesis.

iii

iv

Title: Variants of graph labeling problems

Author: RNDr. Tomáš Masařík

Department: Department of Applied Mathematics

Supervisor: doc. RNDr. Jiří Fiala, Ph.D., Department of Applied Mathematics

Abstract: This thesis consists of three parts devoted to graph labeling, hereditary
graph classes, and parameterized complexity.

Packing coloring, originally Broadcasting Chromatic number, assigns natural
numbers to vertices such that vertices with the same label are in distance at least
the value of the label. This problem is motivated by the assignment of frequencies
to the transmitters. We improve hardness on chordal graphs. We proof that
packing coloring on chordal graphs with diameter 3 is very hard to approximate.
Moreover, we discuss several positive results on interval graphs and on related
structural graph parameters.

Hereditary graph classes are preserved under vertex deletion. We study graphs that
do not contain an induced subgraph H. We prove that 3-coloring is polynomial-
time solvable for (P3 +P4)-free and (P2 +P5)-free graphs and thus we have solved
the last open cases for the problem on H-free graphs where H has up to 7 vertices.

Fair problems are a modification of graph deletion problems, where, instead of
minimizing the size of the solution, the aim is to minimize the maximum number
of neighbors in the deleted set. We show that those problems can be solved in
FPT time for an MSO1 formula parameterized by the size of the formula and the
twin cover of the graph. Moreover, we define a basic fair problem, Fair Vertex
Cover, and we show that it is W[1]-hard parameterized by both treedepth and
feedback vertex set. On the other hand, the problem is in FPT parameterized
by modular-width. In addition, we provide a few more hardness proofs and we
formulate several promising and interesting future research directions.

Keywords: Graph Coloring, Parameterized Complexity, Fair Problems, H-free
Graphs.

v

vi

Contents

Introduction 3
1.1 Graph Problems and Decision Problems 3
1.2 Graph Colorings and Labelings 3

1.2.1 Flexibility . 4
1.3 Hereditary Graph Classes . 4
1.4 Parameterized Complexity . 5

1.4.1 Parameterized Reduction 6
1.4.2 Kernelization . 7
1.4.3 Structural Graph Parameters 7

1.5 Graph Logics . 9
1.5.1 Graph Metatheorems . 10

1.6 Organization of Thesis . 10

2 Complexity of Packing Coloring 13
2.1 Introduction . 13

2.1.1 Known Results . 14
2.1.2 Our Results and Structure of the Paper 14

2.2 Chordal and Interval graphs . 15
2.2.1 Structural Parameters . 19

2.3 Conclusion . 20

3 Coloring of H-free Graphs 21
3.1 Introduction . 21

3.1.1 Our Results . 23
3.1.2 Preliminaries . 23

3.2 The Proof of Theorem 3.1 . 24
3.2.1 Phase 1. Preprocessing (G,L) 27
3.2.2 Phase 2. Reduce the Number of Distinct Sets A(i, j) . . . 29
3.2.3 Phase 3. Reduce to the Case Where Vertices of A1 Have

the Same List . 30
3.2.4 Phase 4. Reduce to a Set of Instances of 2-List Colouring . 34

3.3 The Proof of Corollary 3.2 . 39
3.4 Conclusions . 39

4 Survey on Fair problems 41
4.1 Definition of Fair Problems . 41
4.2 Specific Problems . 42

4.2.1 Edge Problems . 42
4.2.2 Vertex Problems . 44

4.3 Metatheorems . 44
4.3.1 FPT Results . 44

4.4 Open Problems and Further Research Direction 44

1

5 Methatheorems for Fair Problems 47
5.1 Introduction . 47

5.1.1 Our Results . 50
5.1.2 Preliminaries . 52

5.2 Metatheorems for Fair Evaluation 53
5.2.1 Model Checking . 55
5.2.2 Finding a Fair Solution . 56

5.3 The Fair VC Problem . 60
5.3.1 Hardness for Treedepth and Feedback Vertex Set 60
5.3.2 FPT Algorithm for Modular Width 63

5.4 Hardness of Possible Extensions 65
5.5 Conclusions . 68

Bibliography 71

List of Figures 85

List of Tables 87

List of Publications 89

2

Introduction
In this thesis, I present three selected results obtained during my Ph.D. studies.
In addition, I attach a short annotated bibliography about fair problems, the topic
of the third result.

My thesis is centered around graph labeling problems. Those are variants of
the famous graph coloring problem that was first mentioned as early as in the 19th
century. The original task is to assign colors to vertices of the graph such that
the adjacent vertices obtain different colors. This problem is sometimes referred
to as proper coloring. The graph coloring problem emerges in countless practical
application varying from the scheduling to the register assignment. Moreover, it is
an important theoretical tool, and therefore, many classical results are described
in the language of coloring and its modifications. Graph labeling usually means
that we exchange the set of indistinguishable colors for a set of natural numbers
so that some additional special meaning can be tied to them.

1.1 Graph Problems and Decision Problems
In this work, we study problems on graphs. A graph is a basic structure consisting
of the set of vertices and of the set of edges where each edge represents a pair of
vertices. We refer to textbooks and monographs [45, 14, 12, 141] for the usual
concepts and notation of graph theory used in this thesis.

A decision problem, or generally, an algorithmic problem, is a language over a
finite alphabet. We give a similar formal definition for a parameterized problem
(see Definition 1.1). In the case of graphs, the language is just a set of graphs that
satisfy the problems, i.e., the set of graphs such that the answer to the decisional
problem is yes. Loosely speaking, we are usually interested in problems that can
be solved by computers in asymptotically reasonable time.

This vague idea leads to well-studied models of Turing machines and definitions
of P and NP classes. This is a well-established theory, described in many books,
e.g., in the monograph by Garey and Johnson [75], or the original papers by
Cook [31] and Karp [96] from the ’70s. We assume that the reader is familiar with
these concepts, and refer to [75] for formal definitions.

1.2 Graph Colorings and Labelings
The area of graph coloring, labelings, and related research is one of the most
studied among the whole graph theory. There are several books dedicated to
graph coloring e.g., [93] and [125]. Also general surveys, for instance [62], as well
as several specialized surveys, e.g., [77, 22, 140], were published.

In Chapter 3, we stay in the classical setting where we use a small extension of
the notion of proper coloring. For a graphG let L be a function L : V (G) → 2{1,...,c},
where L is usually called a list assignment, then graph G is L-colorable (or list-
colorable) if there exists a proper coloring φ : V (G) → {1, . . . , c} such that
φ(v) ∈ L(v) for all vertices v. Note that if for all vertices the list is the same and
contains all colors {1, . . . , c}, then this is just the proper coloring. We define a

3

special variant called list k-coloring where for all vertices the lists are subsets
of {1, . . . , k}. In this language, the precoloring extension problem allows for all
vertices only list {1, . . . , k} or just a singleton containing only one color. On the
other hand, k-list coloring or k-choosability bound only the size of the lists (each
list has size at least k) but not the number of allowed colors.

Chapter 2 is devoted to packing coloring. This is one of the labeling problems
with the original motivation in the frequency assignment to the transmitters.
Chapters 4 and 5 contain a broadly studied defective coloring problem which is a
very natural particular fair edge deletion problem. All the necessary definitions
are within respective chapters.

Besides a part of my work, I present in detail in the main part of the thesis,
I was during my PhD studies involved in another project closely related to the
graph coloring problem. The following subsection serves as a small excursion to
the concept of flexibility in the graph coloring.

1.2.1 Flexibility
In certain applications of the classical coloring it is common that some vertices
have preferred resource(s). This idea motivated precoloring extension questions.
However, unfortunately, it is not usually possible to satisfy all such preferences.
The notion of ε-Flexibility was first defined by Dvořák, Norin, and Postle in [54].
Instead of satisfying all the preferences, the aim is to satisfy at least a constant
fraction of any request.

More formally, we are given a graph together with its list assignment. By
request we mean a set of pairs, vertex and its preferred color. Note that not
necessarily every vertex has to make a request. Graph G is ε-flexible, if it is
possible for any list assignment L and any request, L-color the graph G such that
at least a constant fraction of the request is satisfied. As it turns out, this question
is trivial in the ordinary proper coloring setting with a bounded number of colors
(where all the lists are of the same size and they consist of colors ranging from 1 to
k). The answer is always positive there, since we can permute the colors according
to the request, and therefore, satisfy at least 1

k2 fraction of any request. On the
other hand, flexibility brought about a number of interesting problems in the list
coloring setting. The main target we aimed for is the following statement. There
exists an absolute constant ε such that for any graph in the studied graphs class
with any lists assignment of size k, and for any request (preferred colors of some
of the vertices) there exists a list coloring of the graph such that it satisfies at
least ε fraction of the request. A well-studied notion of choosability forms a trivial
lower-bound on the value of k from the previous statement. We subsequently
derived a couple of theorems of the mentioned form on various subclasses of
planar graphs [53, 52, 123]. Table 1.1 summarizes known results and provides a
comparison with the choosability on planar graphs.

1.3 Hereditary Graph Classes
Hereditary property is one of the main themes in the study of mathematical
structures. Hereditary graphs are graph classes such that are closed under vertex
deletion. In particular, pattern-free graphs are characterized by some forbidden

4

Planar Graphs General Triangle-free C4-free Girth 5 Girth 6
Choosability 5 [138] 4 4 [110] 3 [139] 3

List size in ε-Flexibility 6 [54] 4 [53] 5 [123] 4 3 [52]

Table 1.1: A summary and a comparisons of choosability and respective results
in the flexibility setting on subclases of planar graphs. Non-implied bounds are
accompagned with the respective citation.

pattern. This notion captures a large number of well-studied graph classes that
are hereditary. For example, bipartite graphs, chordal graphs, and many others.
It has a connection with minor-closed graph classes (for example, planar graphs)
that can be viewed as even a stronger notion of excluding some patterns.

In particular, we consider H-free graphs, i.e., graphs without an induced copy
of graph H. Those graphs are obviously hereditary. Despite the easy description,
such graphs are quite difficult to analyze and it seems that a deeper understanding
of these graph classes or new tools should be developed. We focus on the coloring
problem which is very well-studied on such graphs, see [77] and also Section 3.1.

1.4 Parameterized Complexity
The central concept of the thesis is parameterized complexity, which is one of the
main tools in the study of algorithms and complexity, nowadays.

As we discussed, many classical problems are NP-complete [75], and therefore,
they are not well-scalable even for modern computers. In the run to overcome this
problem, many approaches are considered. We can either sacrifice the optimality
of the solution, and therefore, aim for approximation algorithms. Or we can find
an additional structure in the input data and measure the time complexity in
both, the size of the input and the chosen parameters. Those algorithms are called
Parameterized Algorithms. The history of this field started by a series of paper by
Downey and Fellows [46, 48, 49, 47, 1] with the very first paper that appeared
on FOCS conference in 1989 [2]. Since the publication of a seminal book [50] by
Downey and Fellows in 1999, Parameterized Complexity became one of the most
important fields in algorithm study with plenty of essential publications each year
and a handful of books, e.g., [51, 60] among others. The very recent development
in the field is covered in a book by Cygan et al. [41].

First, we define a parameterized problem.

Definition 1.1. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ
is a fixed alphabet and Σ∗ is an arbitrary string over the alphabet. Then for an
instance (x, k) ∈ Σ∗ × N, k is called the parameter.

The class of the effective parameterized algorithms is called Fixed Parameter
Tractable, in short FPT. It contains all the algorithms with running time f(k)nc,
where f is an arbitrary computable function, k represents the parameter, n is the
size of the input, and c is a constant. Less effective is the class of XP algorithms
with running time nf(k). However, for problems where an FPT algorithm probably
does not exist (W-hard problems, see Subsection 1.4.1), XP algorithms might still

5

k/n 50 (1 day) 100 (3.2T yrs) 500 (10133 yrs) 1000 (10283 yrs)
5 133 ns | 26 ms 266 ns | 0.8 s 1.3 µs | 43 mins 2.7 µs | 1 day
10 4 µs | 94 days 8 µs| 264 yrs 40 µs | 2.5G yrs 80 µs | 2.6T yrs
25 0.1 s | 1024 yrs 0.2 s | 1032 yrs 1 s | 1049 yrs 2 s | 1057 yrs

Table 1.2: Comparisons of running times between naive exponential (2n), XP (nk)
and FPT (2kn) algorithms on a current computer (4 cores, 3GHz). Naive running
times are in the first row in brackets, FPT | XP running times are within the
inner-fields of the table. Shortcut yrs stands for years.

be a very good choice. There exists a similar hierarchy of hard problems as in the
cla

To support the importance of the field in practical computations, we pro-
vide Table 1.2 that sums up the differences in the running time of the efficient
algorithms—a comparison of both FPT and XP with a naive single exponential
algorithm.

1.4.1 Parameterized Reduction
It is usually useful to derive hardness results alongside with the development of
algorithms. On the first glance, it seems that whenever we have a parameter,
such that the problem is NP-hard even when the parameter is constant, then the
problem is hard for parameterization. More formally, if the problem is NP-hard for
all values of a parameter larger than some constant, then it is called para-NP-hard.
This reasoning rules out the existence of not only FPT algorithms but also XP
algorithms (unless P = NP). For example, check Theorem 2.6.

We define the parameterized reduction that is useful to show evidences that
some problems would unlikely allow an FPT algorithm.

Definition 1.2. Let A,B be two parameterized problems. Parameterized reduction
is an algorithm that given an instance (x, k) of A outputs an instance (x′, k′) of
B such that:

• (x, k) is yes-instance of A if and only if (x′, k′) is yes-instance of B,

• k′ ≤ g(k), for a computable function g,

• the reduction algorithm runs in time f(k) · |x|O(1), for a computable function
f .

The parameterized reduction is similar to the classical polynomial-time reduc-
tion that is used to show NP-hardness. However, in fact, both reductions are
incomparable, although many existing reductions fit both contexts. It can be
observed that the parameterized reduction preserves containment in FPT class,
i.e., if there is a parameterized reduction from A to B and problem B is in FPT
then also problem A is in the FPT class.

Since even P ̸= NP is far from being proven then also a classification of
problems hard for parameterized algorithms has to be based on some assumption.
Usually, even a bit stronger assumption than P ̸= NP is used. There is a nested

6

hierarchy of problems, where all the problems in one class are equivalent under a
parameterized reduction:

FPT = W[0] ⊆ W[1] . . .

Problems in classes W[t] for t ≥ 1 are unlikely to admit an FPT algorithm.
The proof of Theorem 5.2 is an example of parameterized reduction showing a
W[1]-hard problem. Details of the definition of W -hierarchy is omitted s for our
purposes it suffices to refer to problems that have been shown W[t]-hard elsewhere.
For a more detailed introduction to the topic consult the book [41] or the original
paper [48].

1.4.2 Kernelization
Kernelization plays an important role in many results from the parameterized
algorithms field.

Definition 1.3. Let L be parameterized problem. A kernelization algorithm or
kernelization is an algorithm such that for any instance (x, k) it outputs in time
polynomial in |(x, k)| a string x′ ∈ Σ∗ and an integer k′ ∈ N such that

(x, k) ∈ L ⇔
(
(x′, k′) ∈ L and |x′|, k′ ≤ h(k)

)
where h is an arbitrary computable function. Function h is called the size of the
kernel.

Definition 1.3 is sometimes strenghtened in a way that k′ ≤ k. It is well-known
that the problem is in FPT if and only if it has a kernel [21]. One implication is
easy since the kernelization algorithm takes polynomial time and then the problem
can be solved exhaustively on the kernel in time independent on the original size
of the input and dependent only on the parameter(s).

In particular, a big effort was spent in obtaining polynomial kernels or in
negative result—refuting the existence of a polynomial kernel. Kernelization
algorithm is described in the proof the main theorem in Section 5.1. Refuting the
polynomial kernel is briefly shown in Lemma 5.4. Very recently (2019), the entire
book devoted to Kernelization has appeared [61]. It is a good source of further
details.

1.4.3 Structural Graph Parameters
In this work, we considered structural parameters in Chapters 2, 4, and 5. See
Figure 1.1 for an overview of the parameters.

We define structural parameters for a graph G = (V,E). The most famous
structural parameter is treewidth. The history of this parameter reaches back
to Bertelè and Briochy in 1972 [9]. A modern equivalent defintion works with a
term called tree decomposition of graph G. It is defined as a tree T with nodes
Xi ⊆ V (G), satisfying the following properties:

• V (G) = ∪iXi.

• For each {u, v} ∈ E(G) exists t ∈ V (T) such that u, v ∈ Xt.

7

cw

tw mw

cvd

sd

nd
tc

fvs

pw

td

vc

Figure 1.1: Hierarchy of graph parameters considered in the thesis. An arrow
indicates that a graph parameter upper-bounds the other.

• For each v ∈ V (G), nodes that contain the vertex v induce a connected
subgraph in T .

The size of a tree decomposition is the maximum size of the node. Then the
treewidth (tw(G)) is the minimum size of a tree decompostion taken over all tree
decompositions of the graph G. Computing the exact value the treewidth is
NP-complete [5], however, it can be computed in FPT time parameterized by its
size [10]. We note for curiosity that the two years of an annual PACE challenge
competition were devoted to computing the treewidth as good as possible [43, 44].

The pathwidth (pw(G)) is the minimum size of the tree decompositions of graph
G, where the decomposition is restricted only to a simple path. This gives a trivial
inclusion. Even weaker graph parameter is the treedepth of a graph G (td(G)).
It is defined as the minimum height of a rooted forest whose transitive closure
contains the graph G [126]. The feedback vertex set (fvs(G)) is the minimum
number of vertices of a graph G whose removal leaves a graph without cycles.
The simplest considered parameter is vertex cover (vc(G)), whih is the minimum
number of vertices of a graph G, whose removal leaves an edgeless graph. All the
above-mentioned parameters form so-called sparse parameters.

Dense graph parameters follow—as oposed to sparse, cliques has the following
parameters bounded. The neighborhood diversity (nd(G)) is the smallest integer
r, such that the graph can be partitioned into r sets, where each set is either
complete graph or an independent set and each pair of sets forms either a complete
bipartite graph or there is no edge between them.

A more complicated conept is the modular width of a graph G (mw(G)),
whih is the smallest positive integer r such that G can be obtained from an
algebraic expression of width at most r, defined as follows. The width of an
expression A is the maximum number of operands used by any occurrence of the
substitution operation in A, where A is an algebraic expression that uses the
following operations:

1. Create an isolated vertex.

2. The substitution operation with respect to a template graph T with vertex set
[r] and graphs G1, . . . , Gr created by algebraic expression. The substitution

8

operation, denoted by T (G1, . . . , Gr), results in the graph on vertex set
V = V1 ∪ · · · ∪ Vr and edge set E = E1 ∪ · · · ∪ Er ∪ ⋃{i,j}∈E(T)

{
{u, v} : u ∈

Vi, v ∈ Vj

}
, where Gi = (Vi, Ei) for all i ∈ [r].

An algebraic expression of width mw(G) can be computed in linear time [137]. The
twin cover tc(G) (introduced by Ganian [69]) is one possible generalization of vertex
cover. It is defined as the number of vertices needed to cover all edges of graph G
that are not twin-edges; an edge {u, v} is a twin-edge if N(u) \ {v} = N(v) \ {u}.
Here, we measure the number of vertices needed to cover all edges that are not
twin-edges; an edge {u, v} is a twin-edge if N(u) \ {v} = N(v) \ {u}. A more
general parameter than twin cover is cluster vertex deletion (cvd(G)), that is,
the smallest number of vertices one has to delete from a graph in order to get
a collection of (disjoint) cliques. The shrub dept (sd(G)) is defined in [72] and
since it is here only for completeness of the picture, we omit here the formal
definition. The last presented and the most powerfull is the cliquewidth (cw(G))
that upper-bounds all the studied parameters. This concept has been defined
in [35] already in 1993. It is defined as the minimum number of colors used in the
following process. Starting with an empty graph, the given graph G is created by
the following operations.

• Create a vertex of a certain color.

• Make the disjoint union of two colored graphs.

• Add all the edges between vertices of two different colors.

• Change color of all the vertices of a certain color to a different color.

1.5 Graph Logics

Graph properties can be formally specified and modeled by a suitable logic. This
concept is heavily exploited in Chapters 4 and 5. We provide here only a brief and
rather an informal introduction to the subject. For more extensive description
We recommend book [116] which explores the use of logic from graphs to finite
models. In the basic setting, a logic has access to the graph and it can make
queries, whether two vertices are adjacent or not. Standard and well-examined
logics for graphs are MSO2, MSO1, and FO. The simplest among them is the
FO logic. There the only allowed quantification is over elements (vertices or
edges) of the graph. A strictly more powerful is MSO1 logic, where in addition
the quantification over the sets of vertices is possible. The most powerful out of
them is MSO2, where in addition even the quantification over the set of edges is
allowed. For example, the hamiltonicity (the existence of a path visiting all the
vertices of a given graph) can be expressed in MSO2 but not in MSO1 [34, 116].
The connectivity in the graph is an example of a property, that can be expressed
in MSO1 but not in FO (not even in existential MSO2, where only existential
quantification is allowed) [57].

9

1.5.1 Graph Metatheorems
Undoubtedly, Courcelle’s Theorem [33] for graph properties expressible in the
monadic second-order logic (MSO2) on graphs of bounded treewidth, as well as
an MSO1 algorithm on graphs of bounded clique-width, play a prime role among
model checking algorithms. In particular, Courcelle’s Theorem provides for an
MSO2 sentence φ an algorithm, that given an n-vertex graph G with treewidth
k decides, whether φ holds in G in time f(k, |φ|)n, where f is some computable
function and |φ| is the quantifier depth of φ. In other words, we obtain an FPT
algorithm parameterized by treewidth and quantifier depth of the formula. Similar
results are known for a weaker MSO1 logic and clique-width. We cannot hope for
much more on dense graph classes since MSO2 model checking is not even in XP
on graphs as simple as cliques unless E = NE [112].

There are many more FPT model checking specialized algorithms, e.g., an
algorithm for (existential counting) modal logic model checking on graphs of
bounded treewidth [129], MSO model checking on graphs of bounded neighborhood
diversity [111], or MSO model checking on graphs of bounded shrubdepth [73]
(generalizing the previous result). First order logic (FO) model checking received
recently quite some attention as well and algorithms for graphs with bounded
degree [133], nowhere dense graphs [81], and some dense graph classes [67] were
given. Chapter 5 or paper [100] contains more discussion on the topic.

1.6 Organization of Thesis
The thesis is composed of 3 papers and of one problem summary with annotated
bibliography. They are presented in the original journal form with only a small
adjustment of their layout and few additional references. The first result appeared
in Information Processing Letters journal. The second was published on ISAAC
2018 conference and is currently under reviews in a journal. The third has just
been accepted to MFCS 2019 conference and we will submit the full version to
a journal shortly. In addition, a short summary of fair problems is provided in
Chapter 4.

Chapter 2 of the thesis is devoted to the packing coloring problem. A graph
labeling problem that has its motivation in assigning frequencies to transmitters,
under its original name, Broadcasting Chromatic Number. It was first formulated
by Goddard, Hedetniemi, Hedetniemi, Harris, and Rall [76]. The presented results
were published as Minki Kim, Bernard Lidický, Tomáš Masařík, and Florian
Pfender. Notes on the complexity of packing coloring. Information Processing
Letters, 137:6–10, 2018. doi:10.1016/j.ipl.2018.04.012. [97]. We slightly improved
the hardness result on chordal graphs given by Fiala and Golovach [59]. Moreover,
several positive results were developed mostly for interval graphs and in terms of
parameterized complexity.

Chapter 3 describes a result in a clasical 3-coloring setting. We examined H-
free graphs, that are graphs without an induced copy of H. In Tereza Klimošová,
Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and Veronika
Slívová. Colouring (Pr+Ps)-free graphs. In 29th International Symposium on
Algorithms and Computation, ISAAC 2018, December 16–19, 2018, Jiaoxi, Yilan,
Taiwan, pages 5:1–5:13, 2018. doi:10.4230/LIPIcs.ISAAC.2018.5. [98] we showed

10

that list 3-coloring is polynomial time solvable on P2 + P5-free and P3 + P4-free
graphs where Pi represents a path on i vertices and symbol + denotes disjoint
union. By this result, we completed the characterization for 3-coloring of H-free
graphs for any H up to seven vertices. The submitted journal version with full
proofs is also available on arxiv [99].

Both Packing coloring and Coloring of H-free graphs are very heavily studied
and several overview papers were published, see e.g., [77]. However, Fair problems
have not received much attention yet, therefore we add a short annotated summary
of known results from this field in Chapter 4. This summary also contains
connections with a closely related topic of defective coloring.

Chapter 5 contains a paper Dušan Knop, Tomáš Masařík, and Tomáš To-
ufar. Parameterized Complexity of Fair Vertex Evaluation Problems. In 44rd
International Symposium on Mathematical Foundations of Computer Science,
MFCS 2019, August 26–30 2019, Aachen, Germany, pages 8:1–8:16, 2019. [102].
The full version we are about to submit to journal containing full proofs is also
available on arxiv [101]. It is a part of a larger project on studying fair problems
and their extensions. They have been mostly studied from the metatheorem point
of view in papers [100, 122, 102]. The main presented result is a metatheorem for
the twin cover. Moreover, the notion of Fair Vertex cover is formulated. For the
Fair Vertex Cover problem, we derive an algorithm parameterized by modular-
width and a W[1]-hardness for a combination of tree depth and feedback vertex
set. The paper presents a few additional hardness results and further research
directions.

Instead of one common Conclusion section at the end of the thesis, each of
Chapters 2, 3, 4, and 5 has its own Conclusions (see 2.3, 3.4, and 5.5) with a
brief summary, open problems and several new directions for the future research.
Chapter 4.4 is devoted to an extended discussion about open problems and
interesting directions for future research.

11

12

2. Complexity of Packing
Coloring

2.1 Introduction

Given a graph G = (V,E) and an integer k, a packing k-coloring is a mapping
φ : V → {1, . . . , k} such that any two vertices u, v of color φ(u) = φ(v) are in
distance at least φ(u) + 1. An equivalent way of defining the packing k-coloring
of G is that it is a partition of V into sets V1, . . . , Vk such that for all k and
any u, v ∈ Vk, the distance between u and v is at least k + 1. The packing
chromatic number of G, denoted χP (G), is the smallest k such there exists a
packing k-coloring of G.

The definition of packing k-coloring is motivated by frequency assignment
problems. It emphasizes the fact that the signal on different frequencies can
travel different distances. In particular, lower frequencies, modeled by higher
colors, travel further so they may be used less often than higher frequencies. The
packing coloring problem was introduced by Goddard et al. [76] under the name
broadcasting chromatic number. The term packing coloring was introduced by
Brešar, Klavžar, and Rall [17].

Determining the packing chromatic number is often difficult. For example,
Sloper [134] showed that the packing chromatic number of the infinite 3-regular
tree is 7 but the infinite 4-regular tree does not admit any packing coloring by
a finite number of colors. Results of Brešar, Klavžar, and Rall [17] and Fiala,
Klavžar, and Lidický [58] imply that the packing chromatic number of the infinite
hexagonal lattice is 7.

Looking at these examples, researchers asked the question if there exists a
constant p such that every subcubic graph has packing chromatic number bounded
by p. A very recent result of Balogh, Kostochka and Liu [7] shows that there is no
such p in quite a strong sense. They show that for every fixed k and g ≥ 2k + 2,
almost every n-vertex cubic graph of girth at least g has packing chromatic number
greater than k. It is still open if a constant bound holds for planar subcubic
graphs, and no deterministic construction of subcubic graphs with arbitrarily high
packing chromatic number is known.

Despite a lot of effort [58, 76, 119, 135], the packing chromatic number of the
square grid is still not determined. It is known to be between 13 and 15 due to
Barnaby, Franco, Taolue, and Jos [119], who use state of the art SAT-solvers to
tackle the problem. In this paper, we consider the packing coloring problem from
the computational complexity point of view. In particular, we study the following
problem.

Packing k-coloring of a graph
Instance: A graph G and a positive integer k.
Question: Does G allow a packing k-coloring?

13

2.1.1 Known Results
We characterize our algorithmic parameterized results in terms of FPT (running
time f(k)poly(n)) and XP (running time nf(k)) where n is the size of the input,
k is the parameter and f is any computable function. The investigation of
computational complexity of packing coloring was started by Goddard et al. [76]
in 2008. They showed that packing k-coloring is NP-complete for general
graphs and k = 4 and it is polynomial time solvable for k ≤ 3. Fiala and
Golovach [59] showed that packing k-coloring is NP-complete for trees for
large k (dependent on the number of vertices).

For a fixed k, packing k-coloring is expressible in MSO1 logic. Thus,
due to Courcelle’s theorem [33], it admits a fixed parameter tractable (FPT)
algorithm parameterized by the tree-width or clique-width [36] of the graph.
Moreover, it is solvable in polynomial time if both the tree-width and the diameter
are bounded [59]. The problem remains in FPT even if we fix the number of
colors that can be used more than once by the extended framework of Courcelle,
Makowsky and Rotics [36], see Theorem 2.11. On the other hand, the problem is
NP-complete for chordal graphs of diameter exactly 5 [59], and it is polynomial
time solvable for split graphs [76]. Note that split graphs are chordal and have
diameter at most 3. However, packing k-coloring admits an FPT algorithm
on chordal graphs parameterized by k [59].

2.1.2 Our Results and Structure of the Paper
In Section 2.2, we describe new complexity results on chordal, interval and proper
interval graphs. We improve a result by Fiala and Golovach [59] in Theorem 2.5,
where we show that computing packing chromatic number of chordal graphs of
any diameter greater or equal than three is NP-complete. Moreover, the reduction
implies an inapproximability result based on the inapproximability of the size of
the largest independent set. Proposition 2.3 shows that calculating the packing
chromatic number of chordal graphs of diameter less than three is can be done in
polynomial time.

We complement these results by several FPT and XP algorithms for calculating
the packing chromatic number on interval and proper interval graphs. We use
dynamic programming to get an XP algorithm for interval graphs of bounded
diameter, see Theorem 2.6. For unit interval graphs, there is an FPT algorithm
parameterized by the size of the largest clique, see Theorem 2.9. Note that the
existence of an FPT algorithm for calculating the packing chromatic number
parameterized by path-width would imply an FPT algorithm for general interval
graphs parameterized by the size of the largest clique, but the existence of such
algorithm remains an open question. We also provide an XP algorithm calculating
the packing chromatic number for interval graphs parameterized by the number
of colors that can be used more than once, see Theorem 2.10.

In Subsection 2.2.1, we describe complexity results and algorithms parameter-
ized by structural parameters. We design FPT algorithms for them. For standard
notation and terminology, we refer to the recent book about parameterized com-
plexity [41].

The packing coloring problem is interesting only when the number of colors is
not bounded. Otherwise, we can easily model the problem by a fixed MSO1 formula

14

and use the FPT algorithm by Courcelle [33] parameterized by the clique-width
of the graph. We show that we can do similar modeling even when we fix only the
number of colors that can be used more than once and then use a stronger result by
Courcelle, Makowski and Rotics [36] that gives an FPT algorithm parameterized
by clique-width of the graph (Theorem 2.11).

If the number of such colors is part of the input, then we can solve the problem
on several graph classes. If they have a bounded diameter, then we can use
Theorem 2.11 due to the following easy observation.

Observation 2.1. Let G be a graph of bounded diameter. Then G has a bounded
number of colors that can be used more than once.

This observation together with Theorem 2.11 implies that the problem is FPT
for any class of graphs of bounded shrub-depth. Any class of graphs that has
bounded shrub-depth has a bounded length of induced paths ([71], Theorem 3.7)
and thus bounded diameter. The same holds for graphs of bounded modular-width
as they have bounded diameter according to Observation 2.2. On the other hand,
the problem was shown to be hard on graphs of bounded tree-width [59], in fact
the problem is NP-hard even on trees. There seems to be a big gap and thus
interesting question about parameterized complexity with respect to path-width of
the graph. It still remains open (Question 2.14). Note that the original hardness
reduction by Fiala and Golovach [59] has unbounded path-width. See Figure 2.2
for an overview of the results with respect to the structural parameters. We
refer [68] for the definition of modular-width and its construction operations.

Observation 2.2. Let G be a graph of modular-width k. Then G has diameter
at most max(k, 2).

Proof. We look at the last step of the decomposition. It has to create a connected
graph and thus it is either a join operation or a template operation. If it is the
join operation then the diameter is at most 2 and if it is the template operation
the longest path between any two vertices in different operands is at most k and
if they are in the same operand their distance is at most 2.

2.2 Chordal and Interval graphs
Proposition 2.3. Packing chromatic number is in P for chordal graphs of diam-
eter 2.

Proof. Let G be a chordal graph of diameter 2. Notice that in graphs of diameter
2, the only color that can be used more than once is color 1. Hence, determining
the packing chromatic number of G is equivalent to finding a largest independent
set in G. In chordal graphs, the largest independent set can be found in polynomial
time. Hence χP (G) can be found in polynomial time.

For larger diameters, we use a similar reduction as Fiala and Golovach [59] to
finding a largest independent set in a general graph. ZPP is a complexity class
of problems which can be solved in expected polynomial time by a probabilistic
algorithm that never makes an error. It lies between P and NP (P ⊆ ZPP ⊆ NP).
It is strongly believed that ZPP ̸= NP. Håstad [91] showed that finding a largest
independent set is hard to approximate.

15

(a) (b) (c) (d)

(e)

Figure 2.1: The reduction from Theorem 2.5 on a 4-cycle.

Theorem 2.4 (Håstad [91]). Unless NP = ZPP, Independent set cannot be
approximated within n1−ε for any ε > 0 on graphs on n vertices.

Together with our reduction, this implies that the packing chromatic number
is hard to approximate.

Theorem 2.5. Packing chromatic number is NP-complete on chordal graphs of
any diameter at least 3 on nH vertices. Moreover, it is hard to approximate within
nH

1
2 −ε for any ε > 0 and any fixed diameter at least 3, unless NP = ZPP.

Proof. We use a reduction to the independent set problem. Let G be any connected
graph on n vertices. We construct a chordal graph H of diameter d ≥ 3 from G
by the following sequence of operations:

(a) start with G, denote the set of its vertices by V ,

(b) subdivide every edge once, denote the set of new vertices by S,

(c) add all possible edges between vertices in S,

(d) for every v ∈ V add a duplicate vertex v′ and the edge vv′; denote the set of
new duplicate vertices by D,

(e) to increase the diameter to d > 3, add a path P of length d− 2 starting in
one vertex in S.

See Figure 2.1 for an example of the construction.
We will choose a packing coloring φ of H with χP (H) colors. Notice that the

graph induced by V ∪S ∪D has diameter at most three. Hence, only colors 1 and
2 can be used more than once on V ∪ S ∪D. We call colors other than 1 and 2
unique. Notice that we can freely permute the unique colors. Pick φ in a way to
maximize the number of unique colors among vertices in S, and subject to that,

16

to maximize the number of vertices in D colored 1. We will show that S has only
vertices of unique colors and all vertices in D are colored 1.

Suppose for the sake of contradiction that there is a vertex s ∈ S colored 1 or
2. Since S is a clique, s is the only vertex in S with this color. Let u ∈ D ∪ V
be a neighbor of s with a unique color. Such a vertex must exist since s has four
neighbors in D ∪ V , and at most two can be colored by 1 and 2. Observe that
by the construction of H, the closed neighborhood N [u] ⊆ N [s]. Thus, for every
vertex w ̸= u, the distance d(w, u) ≤ d(w, s). Hence, we can swap the colors on
s and u, contradicting the choice of φ. Therefore, all vertices in S have unique
colors. Now let x ∈ D and let v be its unique neighbor in V . If v has color 1,
we can swap the colors on x and v, contradicting our choice of φ. Therefore, no
vertices in N(x) have color 1, and thus x has color 1 by our choice of φ.

Since all vertices in D are colored 1, no vertex in V can be colored 1. Minimizing
the number of unique colors on V is the same as maximizing the number of vertices
colored 2. By the distance constraints in H, a subset of V can be colored 2 in H
if and only if it is an independent set in G. Therefore, the vertices colored 2 in
V form a largest independent set in G. For the other implication, if we have a
maximum independent set in G then we can color its vertices by 2. All the other
vertices in V and in S are colored by a unique color and vertices in D are colored
1. This coloring is by the above discussion optimal.

Recall that in order to increase the diameter of H, we added the path P with
one endpoint s ∈ S in step (e). Notice that P can be colored by a pattern of
four colors starting in s: φ(s), 1, 2, 1, 3, 1, 2, 1, 3, 1 The existence of the path
neither increases χP (H) nor influences the coloring φ in V ∪D ∪ S.

Finally, notice that H has at most nH :=
(

n
2

)
+ 2n+ d− 2 vertices, where n is

the number of vertices of the original graph G.
Recall that χP (H) = nH −(n−1)−(α(G)−1)−(d−2), where n−1 correspond

to n vertices colored by color 1, α(G) − 1 are vertices colored by color 2 and d− 2
are extra vertices used in the diameter increasing path, which does not change
χP (H). Therefore, χP (H) = n2

2 + n
2 + 2 − α(G). Hence, if we could approximate

χP (H) with factor (nH) 1
2 −ε for some ε > 0 and the fixed diameter d, we could

approximate size of a largest independent set in G with the same factor, that can
be bounded as

(nH) 1
2 −ε ≤ c · (n2) 1

2 −ε = c · n1−2ε

for some positive constant c, which contradicts Theorem 2.4.

Theorem 2.6. Packing chromatic number for interval graphs of diameter d can
be solved in time O(nd ln(5d)).

Proof. Let φ be a packing coloring of an interval graph G with diameter d, and
let P be a diameter path in G. Note that every interval corresponding to a vertex
of G intersects an interval corresponding to an internal vertex of P . Suppose X is
a set colored by color c ≥ 2 in φ. Internal vertices of P that are neighbors of X
are in distance at least c− 1. Since there is at most d− 2 of them, |X| ≤ d−2

c−1 + 1.
Therefore, only colors 1, . . . , d− 1 can be used more than once by φ. Notice

that the number of vertices colored by 2, . . . , d− 1 is upper bounded by

f(d) =
∑

2≤c≤d−1

(
d− 2
c− 1 + 1

)
= (d− 2)(1 +H(d− 2)) < d ln(5d) − 1,

17

where H(n) is the harmonic number. There are at most nf(d) such partial colorings
of G by colors 2, . . . , d− 1. Finally, vertices colored by 1 form an independent set.
Therefore, the following is an algorithm to find the packing chromatic number of
G.

Enumerate all nf(d) partial colorings by colors 2, . . . , d− 1. For each partial
coloring, find a maximum independent set in the remaining graph, which takes time
O(n) and color the remaining vertices with unique colors. The whole algorithm
runs in time O(nf(d)+1) = O(nd ln(5d)).

Theorem 2.6 can be restated also for AT-free graphs as an anonymous reviewer
suggested. In fact, it holds for any graph class where for every vertex of a graph
holds that it is a neighbor of a vertex of a diameter path and where maximum
independent set is polynomial-time solvable. For AT-free graphs the first trivially
holds and the second was shown in [20].

When restricting the class of graphs to unit interval graphs, we can find an
FPT algorithm parametrized by the size of the largest clique, independent of
diameter. We need the following two results.

Lemma 2.7 (Goddard et al. [76]). For every s ∈ N, the infinite path can be
colored by colors s, s+ 1, . . . , 3s+ 2.

Proposition 2.8 (Fiala and Golovach [59]). Chordal graphs admit an FPT algo-
rithm parameterized by the number of colors used in the solution.

Theorem 2.9. Packing chromatic number for unit interval graphs with a largest
clique of size at most k is FPT in k.

Proof. Let G be a unit interval graph. As G is perfect, we can find a partition
of its vertex set into k independent sets X1, . . . , Xk in polynomial time. Let
Xℓ = {v1, v2, . . . , v|Xℓ|}, where the vi are ordered corresponding to their interval
representation. Note that for all i < j, the distance of vi and vj in G is at least
j − i. This implies that any packing coloring of a path on |Xℓ| vertices can be
used to packing color the set Xℓ without conflicts.

Use Lemma 2.7 to color each Xℓ with colors {5
2(3ℓ−1 − 1) + 1, . . . , 5

2(3ℓ − 1)},
and notice that these color sets are disjoint. This yields a packing coloring of G
with at most 5

2(3k − 1) colors. Therefore, the number of colors we need is bounded
in terms of k, and we can apply Theorem 2.8 to conclude the proof.

In the previous argument, we saw that restricting the number of colors makes
the problem simpler. While we obviously do not have such a restriction for all
interval graphs, we can still achieve a result about partial packing colorings with
a bounded number of colors along similar ideas.

Theorem 2.10. Let k be fixed and G be an interval graph. Finding a partial
coloring by colors 1, . . . , k that is maximizing the number of colored vertices can
be solved in time O(nk+1).

Proof. We compute a function H(u1, . . . , uk) → N, which counts the maximum
number of colored vertices such that vertex ui has its interval with the right
end-point most to the right among all vertices colored by color i. The domain of
H is (V ∪ {N})k, where N is a symbol representing that a particular color was
not used at all. There are (n+ 1)k such functions, so we can pick the optimal one.

18

We show how to compute H using dynamic programming in time O(nk+1).
We order (≺) vertices by the right-most endpoint of their interval. We compute H
based on the order on vertices, obviously, H(N, . . . , N) = 0. We try all colorings
of vertex v, that means we compute H(. . . , vℓ, . . .) for every ℓ ∈ [k] where . . .
stands for any combination of previous vertices and N . If vertex v is colored by ℓ
in H we find the largest value among H(. . . , uℓ, . . .) for any u in distance greater
than ℓ and u ≺ v. There are at most n such vertices. So we set

H(. . . , vℓ, . . .) = max
dist(v,u)>ℓ ∧ u≺v

H(. . . , uℓ, . . .) + 1.

Notice that Theorem 2.10 implies Theorem 2.6 with a smaller exponent in the
running time.

2.2.1 Structural Parameters

vc

nd

mw

td

pw

tw

cw

tc

sd

Figure 2.2: Hierarchy of graph pa-
rameters. An arrow indicates that
a graph parameter upper-bounds the
other. Thus, hardness results are im-
plied in the direction of arrows and algo-
rithms are implied in the reverse direc-
tion. Green circles and red rectangle col-
ors distinguish between hardness results
and FPT algorithms provided. Blue
color without boundary denotes that
the hardness is unknown. (cw is clique-
width, nd is neighborhood diversity, mw
is modular-width, pw is path-width, sd
is shrub-depth, tc is twin cover, td is
tree-depth, tw is tree-width, vc is vertex
cover. See [41] for definitions.)

Theorem 2.11. Let k be fixed and G = (V,E) be a graph of clique-width q.
Finding a partial packing coloring by colors 1, . . . , k that is maximizing the number
of colored vertices can be solved in FPT time parameterized by q.
Proof. We model the problem as an extended formulation in MSO1 logic with one
free variable X that represents the large colors. We use a result by Courcelle,
Makowski and Rotics [36] to solve this formula φ(X) on graphs of clique-width q
in FPT time such that it minimizes the size of the set X.

d(x, y) ≥ i |= ∄z1, . . . , zi−1 ∈ V such that
x = z1 ∧ y = zi−1 ∧ ∪i−2

j=1(edge(zj, zj+1) ∨ (zj = zj+1)).

i-independent(X) |= ∀x, y ∈ X d(x, y) ≥ i.

φ(X) |= ∃X1, . . . Xk ⊆ V s.t. ∀i i-independent(Xi) ∧ V = X∪̇X1∪̇ · · · ∪̇Xk.

19

2.3 Conclusion
Although the diameter is a widely investigated structural parameter we found
that in some cases a related parameter better captures the problem, namely the
number of colors that can be used more than once, as we show in Theorem 2.10.
We close with a few open questions.

Question 2.12. Is determining the packing chromatic number for (unit) interval
graphs in P or is it NP-hard?

Question 2.13. Is determining the packing chromatic number for interval graphs
FPT when parametrized by the largest clique size?

One can think of graphs of bounded path-width as a generalization of interval
graphs with bounded clique size. This leads to the following question. Notice that
Theorem 2.9 could be modified to work on graphs of bounded path-width that
have a decomposition such that every vertex is in a bounded number of bags.

Question 2.14. Is determining the packing chromatic number FPT or XP when
parametrized by the path-width?

20

3. Coloring of H-free Graphs

3.1 Introduction
Graph colouring is a popular concept in Computer Science and Mathematics
due to a wide range of practical and theoretical applications, as evidenced by
numerous surveys and books on graph colouring and many of its variants (see,
for example, [4, 25, 77, 93, 108, 128, 131, 140]). Formally, a colouring of a graph
G = (V,E) is a mapping c : V → {1, 2, . . .} that assigns each vertex u ∈ V a
colour c(u) in such a way that c(u) ̸= c(v) whenever uv ∈ E. If 1 ≤ c(u) ≤ k,
then c is also called a k-colouring of G and G is said to be k-colourable. The
Colouring problem is to decide if a given graph G has a k-colouring for some
given integer k.

It is well known that Colouring is NP-complete even if k = 3 [118]. To
pinpoint the reason behind the computational hardness of Colouring one may
impose restrictions on the input. This led to an extensive study of Colouring
for special graph classes, particularly hereditary graph classes. A graph class
is hereditary if it is closed under vertex deletion. As this is a natural property,
hereditary graph classes capture a very large collection of well-studied graph classes.
A classical result in this area is due to Grötschel, Lovász, and Schrijver [82], who
proved that Colouring is polynomial-time solvable for perfect graphs.

It is readily seen that a graph class G is hereditary if and only if G can be
characterized by a unique set HG of minimal forbidden induced subgraphs. If
HG = {H}, then a graph G ∈ G is called H-free. Hence, for a graph H, the class
of H-free graphs consists of all graphs with no induced subgraph isomorphic to H.

Král’, Kratochvíl, Tuza, and Woeginger [107] started a systematic study into
the complexity of Colouring on H-free graphs for sets H of size at most 2. They
showed polynomial-time solvability if H is an induced subgraph of P4 or P1 + P3
and NP-completeness for all other graphs H. The classification for the case where
H has size 2 is far from finished; see the summary in [77] or an updated partial
overview in [42] for further details. Instead of considering sets H of size 2, we
consider H-free graphs and follow another well-studied direction, in which the
number of colours k is fixed, that is, k no longer belongs to the input. This leads
to the following decision problem:

k-Colouring
Instance: A graph G.
Question: Does there exist a k-colouring of G?

A k-list assignment of G is a function L with domain V such that the list of
admissible colours L(u) of each u ∈ V is a subset of {1, 2, . . . , k}. A colouring c
respects L if c(u) ∈ L(u) for every u ∈ V. If k is fixed, then we obtain the following
generalization of k-Colouring:

List k-Colouring
Instance: A graph G and a k-list assignment L.
Question: Does there exist a colouring of G that respects L?

21

k-Colouring k-Precolouring Extension List k-Colouring
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P P NP-c NP-c P P NP-c NP-c P NP-c NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 3.1: Summary for Pt-free graphs.

For every k ≥ 3, k-Colouring on H-free graphs is NP-complete if H contains
a cycle [56] or an induced claw [89, 115]. Hence, it remains to consider the case
where H is a linear forest (a disjoint union of paths). The situation is far from
settled yet, although many partial results are known [15, 18, 19, 27, 28, 29, 30,
38, 78, 88, 90, 113, 130, 132, 142]. Particularly, the case where H is the t-vertex
path Pt has been well studied. The cases k = 4, t = 7 and k = 5, t = 6 are
NP-complete [90]. For k ≥ 1, t = 5 [88] and k = 3, t = 7 [15], even List
k-Colouring on Pt-free graphs is polynomial-time solvable (see also [77]).

For a fixed integer k, the k-Precolouring Extension problem is to decide
if a given k-colouring c′ defined on an induced subgraph G′ of a graph G can be
extended to a k-colouring c of G. Note that k-Colouring is a special case of
k-Precolouring Extension, whereas the latter problem can be formulated as
a special case of List k-Colouring by assigning list {c′(u)} to every vertex u
of G′ and list {1, . . . , k} to every other vertex of G. Recently, it was shown
in [28, 29] that 4-Precolouring Extension, and therefore 4-Colouring, is
polynomial-time solvable for P6-free graphs. In contrast, the more general problem
List 4-Colouring is NP-complete for P6-free graphs [78]. See Table 3.1 for a
summary of all these results.

From Table 3.1 we see that only the cases k = 3, t ≥ 8 are still open, although
some partial results are known for k-Colouring for the case k = 3, t = 8 [30].
The situation when H is a disconnected linear forest ⋃Pi is less clear. It is
known that for every s ≥ 1, List 3-Colouring is polynomial-time solvable for
sP3-free graphs [19, 77]. For every graph H, List 3-Colouring is polynomial-
time solvable for (H + P1)-free graphs if it is polynomially solvable for H-free
graphs [19, 77]. If H = rP1 + P5 (r ≥ 0), then for every integer k, List k-
Colouring is polynomial-time solvable on (rP1 + P5)-free graphs [38]. This
result cannot be extended to larger linear forests H, as List 4-Colouring is
NP-complete for P6-free graphs [78] and List 5-Colouring is NP-complete for
(P2 + P4)-free graphs [38].

A way of making progress is to complete a classification by bounding the size of
H. It follows from the above results and the ones in Table 3.1 that for a graph H
with |V (H)| ≤ 6, 3-Colouring and List 3-Colouring (and consequently,
3-Precolouring Extension) are polynomial-time solvable on H-free graphs
if H is a linear forest, and NP-complete otherwise (see also [77]). There are two
open cases [77] that must be solved in order to obtain the same statement for
graphs H with |V (H)| ≤ 7. These cases are

• H = P2 + P5

• H = P3 + P4.

22

3.1.1 Our Results
In Section 3.2 we address the two missing cases listed above by proving the
following theorem.

Theorem 3.1. List 3-Colouring is polynomial-time solvable for (P2 +P5)-free
graphs and for (P3 + P4)-free graphs.

We prove Theorem 3.1 as follows. If the graph G of an instance (G,L) of
List 3-Colouring is P7-free, then we can use the aforementioned result of
Bonomo et al. [15]. Hence we may assume that G contains an induced P7. We
consider every possibility of colouring the vertices of this P7 and try to reduce each
resulting instance to a polynomial number of smaller instances of 2-Satisfiability.
As the latter problem can be solved in polynomial time, the total running time of
the algorithm will be polynomial. The crucial proof ingredient is that we partition
the set of vertices of G that do not belong to the P7 into subsets of vertices that
are of the same distance to the P7. This leads to several “layers” of G. We analyse
how the vertices of each layer are connected to each other and to vertices of
adjacent layers so as to use this information in the design of our algorithm.

Combining Theorem 3.1 with the known results yields the following complexity
classifications for graphs H up to seven vertices; see Section 3.3 for its proof.

Corollary 3.2. Let H be a graph with |V (H)| ≤ 7. If H is a linear forest,
then List 3-Colouring is polynomial-time solvable for H-free graphs; otherwise
already 3-Colouring is NP-complete for H-free graphs.

3.1.2 Preliminaries
Let G = (V,E) be a graph. For a vertex v ∈ V , we denote its neighbourhood
by N(v) = {u | uv ∈ E}, its closed neighbourhood by N [v] = N(v) ∪ {v} and its
degree by deg(v) = |N(v)|. For a set S ⊆ V , we write N(S) = ⋃

v∈S N(v) \ S and
N [S] = N(S) ∪ S, and we let G[S] = (S, {uv | u, v ∈ S}) be the subgraph of G
induced by S. The contraction of an edge e = uv removes u and v from G and
introduces a new vertex which is made adjacent to every vertex in N(u) ∪N(v).
The identification of a set S ⊆ V by a vertex w removes all vertices of S from
G, introduces w as a new vertex and makes w adjacent to every vertex in N(S).
The length of a path is its number of edges. The distance distG(u, v) between
two vertices u and v is the length of a shortest path between them in G. The
distance distG(u, S) between a vertex u ∈ V and a set S ⊆ V \ {v} is defined as
min{dist(u, v) | v ∈ S}.

For two graphs G and H, we use G+H to denote the disjoint union of G and
H, and we write rG to denote the disjoint union of r copies of G. Let (G,L) be
an instance of List 3-Colouring. For S ⊆ V (G), we write L(S) = ⋃

u∈S L(u).
We let Pn and Kn denote the path and complete graph on n vertices, respectively.
The diamond is the graph obtained from K4 after removing an edge.

We say that an instance (G′, L′) is smaller than some other instance (G,L) of
List 3-Colouring if eitherG′ is an induced subgraph ofG with |V (G′)| < |V (G)|;
or G′ = G and L′(u) ⊆ L(u) for each u ∈ V (G), such that there exists at least
one vertex u∗ with L′(u∗) ⊂ L(u∗).

23

3.2 The Proof of Theorem 3.1
In this section we show that List 3-Colouring problem is polynomial-time
solvable for (P2 + P5)-free graphs and for (P3 + P4)-free graphs. As arguments for
these two graph classes are overlapping, we prove both cases simultaneously. Our
proof uses the following two results.

Theorem 3.3 ([15]). List 3-Colouring is polynomial-time solvable for P7-free
graphs.

If we cannot apply Theorem 3.3, our strategy is to reduce, in polynomial time,
an instance (G,L) of List 3-Colouring to a polynomial number of smaller
instances of 2-List Colouring. We use the following well-known result due to
Edwards.

Theorem 3.4 ([55]). The 2-List Colouring problem is linear-time solvable.

We are now ready to prove our main result , namely that List 3-Colouring
is polynomial-time solvable for (P2 +P5)-free graphs and for (P3 +P4)-free graphs.
As arguments for these two graph classes are overlapping, we prove both cases
simultaneously. We start with an outline followed by a formal proof.

Outline of the proof of Theorem 3.1. Our goal is to reduce, in polynomial time,
a given instance (G,L) of List 3-Colouring, where G is (P2 + P5)-free or
(P3 +P4)-free, to a polynomial number of smaller instances of 2-List-Colouring
in such a way that (G,L) is a yes-instance if and only if at least one of the new
instances is a yes-instance. As for each of the smaller instances, we can apply
Theorem 3.4, the total running time of our algorithm will be polynomial.

If G is P7-free, then we do not have to do the above and may apply Theorem 3.3
instead. Hence, we assume that G contains an induced P7. We put the vertices of
the P7 in a set N0 and define sets Ni (i ≥ 1) of vertices of the same distance i from
N0; we say that the sets Ni are the layers of G. We then analyse the structure
of these layers using the fact that G is (P2 + P5)-free or (P3 + P4)-free. The first
phase of our algorithm is about preprocessing (G,L) after colouring the seven
vertices of N0 and applying a number of propagation rules. We consider every
possible colouring of the vertices of N0. In each branch, we may have to deal with
vertices u that still have a list L(u) of size 3. We call such vertices active and
prove that they all belong to N2. We then enter the second phase of our algorithm.
In this phase we show, via some further branching, that N1-neighbours of active
vertices either all have a list from {{h, i}, {h, j}}, where {h, i, j} = {1, 2, 3}, or
they all have the same list {h, i}. In the third phase, we reduce, again via some
branching, to the situation where only the latter option applies: N1-neighbours
of active vertices all have the same list. Then in the fourth and final phase of
our algorithm, we know so much structure of the instance that we can reduce
to a polynomial number of smaller instances of 2-List-Colouring via a new
propagation rule identifying common neighbourhoods of two vertices by a single
vertex.

Theorem 3.1 (restated). List 3-Colouring is polynomial-time solvable for
(P2 + P5)-free graphs and for (P3 + P4)-free graphs.

24

Proof. Let (G,L) be an instance of List 3-Colouring, where G = (V,E) is an
H-free graph for H ∈ {P2 +P5, P3 +P4}. Note that G is (P3 +P5)-free. Since the
problem can be solved component-wise, we may assume that G is connected. If G
contains a K4, then G is not 3-colourable, and thus (G,L) is a no-instance. As
we can decide if G contains a K4 in O(n4) time by brute force, we assume that
from now on G is K4-free. By brute force, we either deduce in O(n7) time that G
is P7-free or we find an induced P7 on vertices v1, . . . , v7 in that order. In the first
case, we use Theorem 3.3. It remains to deal with the second case.

Definition 3.5 (Layers). Let N0 = {v1, . . . , v7}. For i ≥ 1, we define Ni =
{u | dist(u,N0) = i}. We call the sets Ni (i ≥ 0) the layers of G.

In the remainder, we consider N0 to be a fixed set of vertices. That is, we
will update (G,L) by applying a number of propagation rules and doing some
(polynomial) branching, but we will never delete the vertices of N0. This will
enable us to exploit the H-freeness of G.

We show the following two claims about layers.

Claim 3.6. V = N0 ∪N1 ∪N2 ∪N3.

Proof of Claim. Suppose Ni ̸= ∅ for some i ≥ 4. As G is connected, we may
assume that i = 4. Let u4 ∈ N4. By definition, there exists two vertices u3 ∈ N3
and u2 ∈ N2 such that u2 is adjacent to u3 and u3 is adjacent to u4. Then G has
an induced P3 + P5 on vertices u2, u3, u4, v1, v2, v3, v4, v5, a contradiction. ♢

Claim 3.7. G[N2 ∪N3] is the disjoint union of complete graphs of size at most 3,
each containing at least one vertex of N2 (and thus at most two vertices of N3).

Proof of Claim. First assume that G[N2 ∪ N3] has a connected component D
that is not a clique. Then D contains an induced P3, which together with the
subgraph G[{v1, . . . , v5}] forms an induced P3 + P5, a contradiction. Then the
claim follows after recalling that G is K4-free and connected. ♢

We will now introduce a number of propagation rules, which run in polynomial
time. We are going to apply these rules on G exhaustively, that is, until none of
the rules can be applied anymore. Note that during this process some vertices of
G may be deleted (due to Rules 4 and 10), but as mentioned we will ensure that
we keep the vertices of N0, while we may update the other sets Ni (i ≥ 1). We
say that a propagation rule is safe if the new instance is a yes-instance of List
3-Colouring if and only if the original instance is so.

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.

Rule 2. (some lists of size 3) If |L(u)| ≤ 2 for every u ∈ V , then apply
Theorem 3.4.

Rule 3. (connected graph) IfG is disconnected, then solve List 3-Colouring
on each instance (D,LD), where D is a connected component of G that
does not contain N0 and LD is the restriction of L to D. If D has no
colouring respecting LD, then return no; otherwise remove the vertices
of D from G.

25

Rule 4. (no coloured vertices) If u /∈ N0, |L(u)| = 1 and L(u) ∩ L(v) = ∅ for
all v ∈ N(u), then remove u from G.

Rule 5. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and
L(u) ⊆ L(v), then set L(v) := L(v) \ L(u).

Rule 6. (diamond colour propagation) If u and v are adjacent and share
two common neighbours x and y with L(x) ̸= L(y), then set L(x) :=
L(x) ∩ L(y) and L(y) := L(x) ∩ L(y).

Rule 7. (twin colour propagation) If u and v are non-adjacent, N(u) ⊆ N(v),
and L(v) ⊂ L(u), then set L(u) := L(v).

Rule 8. (triangle colour propagation) If u, v, w form a triangle, |L(u) ∪
L(v)| = 2 and |L(w)| ≥ 2, then set L(w) : =L(w) \ (L(u) ∪ L(v)),
so |L(w)| ≤ 1.

Rule 9. (no free colours) If |L(u) \ L(N(u))| ≥ 1 and |L(u)| ≥ 2 for some
u ∈ V , then set L(u) := {c} for some c ∈ L(u) \ L(N(u)).

Rule 10. (no small degrees) If |L(u)| > | deg(u)| for some u ∈ V \ N0, then
remove u from G.

As mentioned, our algorithm will branch at several stages to create a number
of new but smaller instances, such that the original instance is a yes-instance if
and only if at least one of the new instances is a yes-instance. Unless we explicitly
state otherwise, we implicitly assume that Rules 1–10 are applied exhaustively
immediately after we branch (the reason why we may do this is shown in Claim 3.8).
If we apply Rule 1 or 2 on a new instance, then a no-answer means that we will
discard the branch. So our algorithm will only return a no-answer for the original
instance (G,L) if we discarded all branches. On the other hand, if we can apply
Rule 2 on some new instance and obtain a yes-answer, then we can extend the
obtained colouring to a colouring of G that respects L, simply by restoring all the
already coloured vertices that were removed from the graph due to the rules. We
will now state Claim 3.8.

Claim 3.8. Rules 1–10 are safe and their exhaustive application takes polynomial
time. Moreover, if we have not obtained a yes- or no-answer, then afterwards
G is a connected (H,K4)-free graph, such that V = N0 ∪ N1 ∪ N2 ∪ N3 and
2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.

Proof of Claim. It is readily seen that Rules 1–5 are safe. For Rule 6, this follows
from the fact that any 3-colouring assigns x and y the same colour. For Rule 7,
this follows from the fact that u can always be recoloured with the same colour as
v. For Rule 8, this follows from the fact that the colours from L(u) ∪ L(v) must
be used on u and v. For Rule 9, this follows from the fact that no colour from
L(u) \ L(N(u)) will be assigned to a vertex in N(u). For Rule 10, this follows
from the fact that we always have a colour available for u.

It is readily seen that applying Rules 1, 2 and 4–10 take polynomial time.
Applying Rule 3 takes polynomial time, as each connected component of G that
does not contain N0 is a complete graph on at most three vertices due to the

26

(H,K4)-freeness of G (recall that H = P2 +P3 or H = P3 +P4). Each application
of a rule either results in a no-answer, a yes-answer, reduces the list size of at
least one vertex or reduces G by at least one vertex. Thus exhaustive application
of the rules takes polynomial time.

Suppose exhaustive application does not yield a no-answer or a yes-answer. By
Rule 3, G is connected. As no vertex of N0 was removed, G contains N0. Hence,
we can define V = N0 ∪N1 ∪N2 ∪N3 by Claim 3.6. By Rules 4 and 5, we find that
2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0. It is readily seen that Rules 1–10 preserve
(H,K4)-freeness of G. ♢

3.2.1 Phase 1. Preprocessing (G,L)
In Phase 1 we will preprocess (G,L) using the above propagation rules. To start
off the preprocessing we will branch via colouring the vertices of N0 in every
possible way. To start off the preprocessing we will branch via colouring the
vertices of N0 in every possible way. By colouring a vertex u, we mean reducing
the list of permissible colours to size exactly one. (When L(u) = {c}, we consider
vertex coloured by colour c.) Thus, when we colour some vertex u, we always give
u a colour from its list L(u), moreover, when we colour more than one vertex we
will always assign distinct colours to adjacent vertices.

Branching I (O(1) branches). We now consider all possible combinations of
colours that can be assigned to the vertices in N0. That is, we branch into at most
37 cases, in which v1, . . . , v7 each received a colour from their list. We note that
each branch leads to a smaller instance and that (G,L) is a yes-instance if and only
if at least one of the new instances is a yes-instance. Hence, if we applied Rule 1
in some branch, then we discard the branch. If we applied Rule 2 and obtained
a no-answer, then we discard the branch as well. If we obtained a yes-answer,
then we are done. Otherwise we continue by considering each remaining branch
separately. For each remaining branch, we denote the resulting smaller instance
by (G,L) again.

We will now introduce a new rule, namely Rule 11. We apply Rule 11 together
with the other rules. That is, we now apply Rules 1–11 exhaustively. However,
each time we apply Rule 11 we first ensure that Rules 1–10 have been applied
exhaustively.

Rule 11 (N3-reduction) If u and v are in N3 and are adjacent, then remove u
and v from G.

Claim 3.9. Rule 11, applied after exhaustive application of Rules 1–10, is safe
and takes polynomial time. Moreover, afterwards G is a connected (H,K4)-free
graph, such that V = N0 ∪N1 ∪N2 ∪N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V \N0.

Proof of Claim. Assume that we applied Rules 1–10 exhaustively and that N3
contains two adjacent vertices u and v. By Claim 3.7, we find that u and v have
a common neighbour w ∈ N2 and no other neighbours. By Rules 4, 5 and 10,
we then find that |L(u)| = |L(v)| = 2. First suppose that L(u) = L(v), say
L(u) = L(v) = {1, 2}. Then, by Rule 8, we find that L(w) = {3}, contradicting

27

v1 v2 v3 v4 v5 v6 v7
N0

N1

N2

N3

Figure 3.1: All possible connected components in G[N2 ∪N3].

Rule 4. Hence L(u) ̸= L(v), say L(u) = {1, 2} and L(v) = {1, 3}. By Rule 8,
we find that L(w) = {2, 3} or L(w) = {1, 2, 3}. If w gets colour 1, we can give
u colour 2 and v colour 3. If w gets colour 2, we can give u colour 1 and v
colour 3. Finally, if w gets colour 3, then we can give u colour 2 and v colour 1.
Hence we may set V := V \ {u1, u2}. This does not destroy the connectivity or
(H,K4)-freeness of G. ♢

We now show the following claim.

Claim 3.10. The set N3 is independent, and moreover, each vertex u ∈ N3 has
|L(u)| = 2 and exactly two neighbours in N2 which are adjacent.

Proof. By Rule 11, we find that N3 is independent. As every vertex of N3 has at
most two neighbours in N2 due to Claim 3.7, the claim follows from Rules 4, 5, 10
and the fact that N3 is independent. The two neighbours of a vertex in N3 must
be mutually adjacent, otherwise, they form an induced P3 that is not connected
with N0.

The following claim follows immediately from Claims 3.7 and 3.10 and gives a
complete description of the second and third layer, see also Figure 3.1.

Claim 3.11. Every connected component D of Graph[N2 ∪ N3] is a complete
graph with either |D| ≤ 2 and D ⊆ N2, or |D| = 3 and |D ∩N3| ≤ 1.

The following claim describes the location of the vertices with list of size 3 in
G.

Claim 3.12. For every u ∈ V , if |L(u)| = 3, then u ∈ N2.

Proof of Claim. As the vertices in N0 have lists of size 1, the vertices in N1 have
lists of size 2. By Claim 3.10, the same holds for vertices in N3. ♢

In the remainder of the proof we will show how to branch in order to reduce the
lists of the vertices u ∈ N2 with |L(u)| = 3 by at least one colour. We formalize
this approach in the following definition.

Definition 3.13 (Active vertices). A vertex u ∈ N2 and its neighbours in N1 are
called active if |L(u)| = 3. Let A be the set of all active vertices. Let A1 = A∩N1
and A2 = A ∩N2. We deactivate a vertex u ∈ A2 if we reduce the list L(u) by at

28

least one colour. We deactivate a vertex w ∈ A1 by deactivating all its neighbours
in A2.

Note that every vertex w ∈ A1 has |L(w)| = 2 by Rule 5 applied on the vertices
of N0. Hence, if we reduce L(w) by one colour, all neighbours of w in A2 become
deactivated by Rule 5, and w is removed by Rule 4.

For 1 ≤ i < j ≤ 7, we let A(i, j) ⊆ A1 be the set of active neighbours of vi

that are not adjacent to vj and similarly, we let A(j, i) ⊆ A1 be the set of active
neighbours of vj that are not adjacent to vi.

3.2.2 Phase 2. Reduce the Number of Distinct Sets A(i, j)
We will now branch into O((n45) smaller instances such that (G,L) is a yes-
instance of List 3-Colouring if and only if at least one of these new instances
is a yes-instance. Each new instance will have the following property:

(P) for 1 ≤ i ≤ j ≤ 7 with j − i ≥ 2, either A(i, j) = ∅ or A(j, i) = ∅.

Branching II (O
(
n

(
3·((7

2)−6)
))

= O(n45) branches. Consider two vertices vi

and vj with 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2. Assume without loss of generality that
vi is coloured 3 and that vj is coloured either 1 or 3. Hence, every w ∈ A(i, j)
has L(w) = {1, 2}, whereas every w ∈ A(j, i) has L(w) = {2, q} for q ∈ {1, 3}.
We branch as follows. We consider all possibilities where at most one vertex of
A(i, j) receives colour 2 (and all other vertices of A(i, j) receive colour 1) and all
possibilities where we choose two vertices from A(i, j) to receive colour 2. This
leads to O(n) + O(n2) = O(n2) branches. In the branches where at most one
vertex of A(i, j) receives colour 2, every vertex of A(i, j) will be deactivated. So
Property (P) is satisfied for i and j.

Now consider the branches where two vertices x1, x2 of A(i, j) both received
colour 2. We update A(j, i) accordingly. In particular, afterwards no vertex in
A(j, i) is adjacent to x1 or x2, as 2 is a colour in the list of each vertex of A(j, i).
We now do some further branching for those branches where A(j, i) ̸= ∅. We
consider the possibility where each vertex of N(A(j, i)) ∩A2 is given the colour of
vj and all possibilities where we choose one vertex in N(A(j, i)) ∩ A2 to receive a
colour different from the colour of vj (we consider both options to colour such a
vertex). This leads to O(n) branches. In the first branch, every vertex of A(j, i)
will be deactivated. So Property (P) is satisfied for i and j.

Now consider a branch where a vertex u ∈ N(A(j, i)) ∩ A2 receives a colour
different from the colour of vj. We will show that also, in this case, every vertex
of A(j, i) will be deactivated. For contradiction, assume that A(j, i) contains a
vertex w that is not deactivated after colouring u. As u was in N(A(j, i)) ∩A2, we
find that u had a neighbour w′ ∈ A(j, i). As u is coloured with a colour different
from the colour of vj, the size of L(w′) is reduced by one (due to Rule 4). Hence
w′ got deactivated after colouring u, and thus w′ ̸= w. As w is still active, w
has a neighbour u′ ∈ A2. As u′ and w are still active, u′ and w are not adjacent
to w′ or u. Hence, u,w′, vj, w, u

′ induce a P5 in G. As x1 and x2 both received
colour 2, we find that x1 and x2 are not adjacent to each other. Hence, x1, vi, x2
induce a P3 in G. Recall that all vertices of A(j, i), so also w and w′, are not

29

vi · · · vk · · · vj
N0

N1

N2

x1 x2

u

w′

u′

w

Figure 3.2: The situation in Branching II.

adjacent to x1 or x2. As u and u′ were still active after colouring x1 and x2, we
find that u and u′ are not adjacent to x1 or x2 either. By definition of A(j, i), w
and w′ are not adjacent to vi. By definition of A(i, j), x1 and x2 are not adjacent
to vj. Moreover, vi and vj are non-adjacent, as j − i ≥ 2. We conclude that G
contains an induced P3 +P5, namely with vertex set {x1, vi, x2} ∪ {u,w′, vj, w, u

′},
a contradiction (see Figure 3.2 for an example of such a situation). Hence, every
vertex of A(j, i) is deactivated. So Property (P) is satisfied for i and j also for
these branches.

Finally by recursive application of the above described procedure for all pairs
vi, vj such that 1 ≤ i ≤ j ≤ 7 and j−i ≥ 2 we get a graph satisfying Property (P),

which together leads to O
(
n

(
3·((7

2)−6)
))

= O(n45) branches.
We now consider each resulting instance from Branching II. We denote such

an instance by (G,L) again. Note that vertices from N2 may now belong to N3,
as their neighbours in N1 may have been removed due to the branching. The
exhaustive application of Rules 1– 11 preserves (P) (where we apply Rule 11 only
after applying Rules 1–10 exhaustively). Hence (G,L) satisfies (P).

We observe that if two vertices in A1 have a different list, then they must
be adjacent to different vertices of N0. Hence, by Property (P), at most two
lists of {{1, 2}, {1, 3}, {2, 3}} can occur as lists of vertices of A1. Without loss of
generality this leads to two cases: either every vertex of A1 has list {1, 2} or {1, 3}
and both lists occur on A1; or every vertex of A1 has list {1, 2} only. In the next
phase of our algorithm we reduce, via some further branching, every instance of
the first case to a polynomial number of smaller instances of the second case.

3.2.3 Phase 3. Reduce to the Case Where Vertices of A1
Have the Same List

Recall that we assume that every vertex of A1 has list {1, 2} or {1, 3}. In this
phase we deal with the case when both types of lists occur in A1. We first prove
the following claim.
Claim 3.14. Let i ∈ {1, 3, 5, 7}. Then every vertex from A1 ∩N(vi) is adjacent
to some vertex vj with j ̸∈ {i− 1, i, i+ 1}.

Proof of Claim. We may assume without loss of generality that i = 1 or i = 3. For
contradiction suppose there exists a vertex w ∈ A1 ∩N(vi) that is non-adjacent
to all vj with j ̸∈ {i− 1, i, i+ 1}. As two consecutive vertices in N0 have different

30

colours, no vertex in A1 has two consecutive neighbours in N0 due to Rules 4
and 5. Hence N(w) ∩ N0 = {vi}. By definition, w has a neighbour u ∈ A2. If
i = 1, then {u,w, v1, v2, v3} ∪ {v5, v6, v7} induces a P3 + P5 in G. If i = 3, then
{v1, v2, v3, w, u} ∪ {v5, v6, v7} induces a P3 + P5 in G. ♢

Claim 3.15. It holds that N(A1) ∩ N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6.
Moreover, we may assume without loss of generality that vi−1 and vi+1 have
colour 3 and both are adjacent to all vertices of A1 with list {1, 2}, whereas vi has
colour 2 and is adjacent to all vertices of A1 with list {1, 3}.

Proof of Claim. Recall that lists {1, 2} and {1, 3} both occur on A1. By
Property (P), this means that either N(A1) ∩N0 = {vi−1, vi} for some 2 ≤ i ≤ 7
or N(A1)∩N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. The case where N(A1)∩N0 =
{vi−1, vi} for some 2 ≤ i ≤ 7 is not possible due to Claim 3.14. It follows that
N(A1) ∩N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. We may assume without loss of
generality that vi has colour 2, meaning that vi−1 and vi+1 must have colour 3. It
follows that every vertex of A1 with list {1, 3} is adjacent to vi but not to vi−1 or
vi+1, whereas every vertex of A1 with list {1, 2} is adjacent to at least one vertex
of {vi−1, vi+1} but not to vi. As a vertex of A1 with list {1, 3} has vi as its only
neighbour in N0, it follows from Claim 3.14 that i is an even number. This means
that i− 1 is odd. Hence, every vertex of A1 with list {1, 2} is in fact adjacent to
both vi−1 and vi+1 due to Claim 3.14. ♢

By Claim 3.15, we can partition the set A1 into two (non-empty) sets X1,2 and
X1,3, where X1,2 is the set of vertices in A1 with list {1, 2} whose only neighbours
in N0 are vi−1 and vi+1 (which both have colour 3) and X1,3 is the set of vertices
in A1 with list {1, 3} whose only neighbour in N0 is vi (which has colour 2).

Our goal is to show that we can branch into at most O(n2) smaller instances,
in which either X1,2 = ∅ or X1,3 = ∅, such that (G,L) is a yes-instance of List
3-Colouring if and only if at least one of these smaller instances is a yes-instance.
Then afterwards it suffices to show how to deal with the case where all vertices
in A1 have the same list in polynomial time; this will be done in Phase 4 of the
algorithm. We start with the following O(n) branching procedure (in each of the
branches we may do some further O(n) branching later on).

Branching III (O(n) branches). We branch by considering the possibility of
giving each vertex in X1,2 colour 2 and all possibilities of choosing a vertex in
X1,2 and giving it colour 1. This leads to O(n) branches. In the first branch we
obtain X1,2 = ∅. Hence we can start Phase 4 for this branch. We now consider
every branch in which X1,2 and X1,3 are both nonempty. For each such branch we
will create O(n) smaller instances of List 3-Colouring, where X1,3 = ∅, such
that (G,L) is a yes-instance of List 3-Colouring if and only if at least one of
the new instances is a yes-instance.

Let w ∈ X1,2 be the vertex that was given colour 1 in such a branch. Although
by Rule 4 vertex w will need to be removed from G, we make an exception by
temporarily keeping w after we coloured it. The reason is that the presence of w
will be helpful for analysing the structure of (G,L) after Rules 1–11 have been
applied exhaustively (where we apply Rule 11 only after applying Rules 1–10
exhaustively). In order to do this, we first show the following three claims.

31

Claim 3.16. Vertex w is not adjacent to any vertex in A2 ∪X1,2 ∪X1,3.

Proof of Claim. By giving w colour 1, the list of every neighbour of w in A2
has been reduced by one due to Rule 5. Hence, all neighbours of w in A2 are
deactivated. For the same reason all neighbours of w in X1,2, which have list
{1, 2}, are coloured 2, and all neighbours of w in X1,3, which have list {1, 3}, are
coloured 3. These vertices were removed from the graph by Rule 4. This proves
the claim. ♢

Claim 3.17. The graph G[X1,3 ∪ (N(X1,3) ∩ A2) ∪ N3] is the disjoint union of
one or more complete graphs, each of which consists of either one vertex of X1,3
and at most two vertices of A2, or one vertex of N3.

Proof of Claim. We write G∗ = G[X1,3 ∪ (N(X1,3) ∩ A2) ∪ N3] and first show
that G∗ is the disjoint union of one or more complete graphs. For contradiction,
assume that G∗ is not such a graph. Then G∗ contains an induced P3, say
on vertices u1, u2, u3 in that order. As w ∈ X1,2 ⊆ N1, we find that w is not
adjacent to any vertex of N3. By Claim 3.16, we find that w is not adjacent to
any vertex of A2 ∪ X1,3. Recall that vi−1 and vi+1 are the only neighbours of
w in N0, whereas vi is the only neighbour of the vertices of X1,3 in N0. Hence,
{u1, u2, u3} ∪ {v1, . . . , vi−1, w, vi+1, . . . , v7} induces a P3 +P7. This contradicts the
(P3 + P5)-freeness of G. We conclude that G∗ is the disjoint union of one or more
complete graphs.

As G is K4-free, the above means that every connected component of G∗ is a
complete graph on at most three vertices. No vertex of N3 is adjacent to a vertex
in X1,3 ⊆ N1. Moreover, by definition, every vertex of N(X1,3) ∩ A2 is adjacent
to at least one vertex of X1,3. As every connected component of G∗ is a complete
graph, this means that no vertex of N3 is adjacent to a vertex of N(X1,3) ∩ A2
either. We conclude that the vertices of N3 are isolated vertices of G∗.

Let D be a connected component of G∗ that does not contain a vertex of N3.
From the above we find that D is a complete graph on at most three vertices.
By definition, every vertex in X1,3 has a neighbour in A2 and every vertex of
N(X1,3) ∩ A2 has a neighbour in X1,3. This means that D either consists of one
vertex in X1,3 and at most two vertices of A2, or D consists of two vertices of
X1,3 and one vertex of A2. We claim that the latter case is not possible. For
contradiction, assume that D is a triangle that consists of three vertices s, u1, u2,
where s ∈ A2 and u1, u2 ∈ X1,3. However, as L(u1) = L(u2) = {1, 3}, we find that
|L(s)| = 1 by Rule 8, contradicting the fact that s belongs to A2. This completes
the proof of the claim. ♢

Claim 3.18. For every pair of adjacent vertices s, t with s ∈ A2 and t ∈ N2,
either t is adjacent to w, or N(s) ∩X1,3 ⊆ N(t).

Proof of Claim. For contradiction, assume that t is not adjacent to w and that
there is a vertex r ∈ X1,3 that is adjacent to s but not to t. By Claim 3.16, we
find that w is not adjacent to r or s. Just as in the proof of Claim 3.17, we find
that {r, s, t} together with {v1, , . . . , vi−1, w, vi+1, . . . , v7} induces a P3 + P7 in G,
a contradiction. ♢

32

We now continue as follows. Recall that X1,3 ̸= ∅. Hence there exists a vertex
s ∈ A2 that has a neighbour r ∈ X1,3. As s ∈ A2, we have that |L(s)| = 3. Then,
by Rule 10, we find that s has at least two neighbours t and t′ not equal to r. By
Claim 3.17, we find that neither t nor t′ belongs to X1,3 ∪ N3. We are going to
fix an induced 3-vertex path P s of G, over which we will branch, in the following
way.

If t and t′ are not adjacent, then we let P s be the induced path in G with
vertices t, s, t′ in that order. Suppose that t and t′ are adjacent. As G is K4-free
and s is adjacent to r, t, t′, at least one of t, t′ is not adjacent to r. We may assume
without loss of generality that t is not adjacent to r.

First assume that t ∈ N2. Recall that s has a neighbour in X1,3, namely r,
and that r is not adjacent to t. We then find that t must be adjacent to w by
Claim 3.18. As s ∈ A2, we find that s is not adjacent to w by Claim 3.16. In this
case we let P s be the induced path in G with vertices s, t, w in that order.

Now assume that t /∈ N2. Recall that t /∈ N3. Hence, t must be in N1. Then, as
t /∈ X1,3 but t is adjacent to a vertex in A2, namely s, we find that t ∈ X1,2. Recall
that t′ /∈ X1,3. If t′ ∈ N1 then the fact that t′ /∈ X1,3, combined with the fact that
t′ is adjacent to s ∈ A2, implies that t′ ∈ X1,2. However, by Rule 8 applied on
s, t, t′, vertex s would have a list of size 1 instead of size 3, a contradiction. Hence,
t′ /∈ N1. As t′ /∈ N3, this means that t′ ∈ N2. If t′ is adjacent to r, then t ∈ X1,2
with L(t) = {1, 2} and r ∈ X1,3 with L(r) = {1, 3} would have the same lists by
Rule 6 applied on r, s, t, t′, a contradiction. Hence t′ is not adjacent to r. Then,
by Claim 3.18, we find that t′ must be adjacent to w. Note that s is not adjacent
to w due to Claim 3.16. In this case we let P s be the induced path in G with
vertices s, t′, w in that order.

We conclude that either P s = tst′ or P s = stw or P s = st′w. We are now
ready to apply another round of branching.

Branching IV (O(n) branches). We branch by considering the possibility of
removing colour 2 from the list of each vertex in N(X1,3) ∩A2 and all possibilities
of choosing a vertex in N(X1,3) ∩ A2 and giving it colour 2. In the branch where
we removed colour 2 from the list of every vertex in N(X1,3) ∩A2, we obtain that
X1,3 = ∅. Hence for that branch we can enter Phase 4. Now consider a branch
where we gave some vertex s ∈ N(X1,3) ∩A2 colour 2. Let P s = tst′ or P s = stw
or P s = st′w. We do some further branching by considering all possibilities of
colouring the vertices of P s that are not equal to the already coloured vertices s
and w (should w be a vertex of P s) and all possibilities of giving a colour to the
vertex from N(s) ∩X1,3 (recall that by Claim 3.17, |N(s) ∩X1,3| = 1). This leads
to a total of O(n) branches. We claim that in each of these branches, the size of
X1,3 has reduced to at most 1.

For contradiction, assume that there exists a branch where X1,3 contains two
vertices y and y′. Let sa and sb be the neighbours of y and y′ in A2, respectively.
By Claim 3.17, the graph induced by {y, y′, sa, sb} is isomorphic to 2P2. Hence,
the set {sa, y, vi, y

′, sb} induces a P5 in G. Recall that P s = tst′ or P s = stw or
P s = st′w. As sa and sb have a list of size 3, neither sa nor sb is adjacent to a
vertex of P s due to rule 5. By Claims 3.16 and 3.17, neither y nor y′ is adjacent
to w or s, respectively. By colouring N(s) ∩X1,3 neither y nor y′ is adjacent to s,
too. As s received colour 2, vertices t and t′ have received colour 1 or 3 should

33

vi−1 vi vi+1

N0

N1

N2

y′

sb

y

sa

ywt

t′

r

s

Figure 3.3: The situation in Branching IV if t1 ∈ N1 and if vertices sa and sb

exist.

they belong to P s. In that case neither t nor t′ can be adjacent to y or y′, as
L(y) = L(y′) = {1, 3}. By definition, vi is not adjacent to s or w. Moreover,
vi can only be adjacent to a vertex from {tj, t′j} if that vertex belonged to N1.
However, recall that t and t′ were not in X1,3 while s was an active vertex. Hence
if t or t′ belonged to N1, they must have been in X1,2 and thus not adjacent to
vi. This means that the vertices of P s, together with {sa, y, vi, y

′, sb}, induce a
P3 + P5 in G, a contradiction (see Figure 3.3 for an example of such a situation).
Thus X1,3 must contain at most one vertex.

Branching V (O(1) branches). We branch by considering both possibilities
of colouring the unique vertex of X1,3. This leads to two new but smaller instances
of List 3-Colouring, in each of which the set X1,3 = ∅. Hence, our algorithm
can enter Phase 4.

3.2.4 Phase 4. Reduce to a Set of Instances of 2-List
Colouring

Recall that in this stage of our algorithm we have an instance (G,L) in which
every vertex of A1 has the same list, say {1, 2}. We deal with this case as follows.
First suppose that H = P2 + P5. Then G[N2 ∪ N3] is an independent set, as
otherwise two adjacent vertices of N2 ∪ N3 form, together with v1, . . . , v5, an
induced P2 +P5. Hence, we can safely colour each vertex in A2 with colour 3, and
afterwards we may apply Theorem 3.4.

Now suppose that H = P3 + P4. We first introduce two new rules, which turn
(G,L) into a smaller instance. In Claims 3.19 and 3.21 we show that we may
include those rules in our set of propagation rules that we apply implicitly every
time we modify the instance (G,L).

Rule 12 (neighbourhood identification) If u and v are adjacent, N(v) ⊆ N [u],
and |L(v)| = 3, then identify N(u)∩N(v) by w, set L(w) := ⋂{L(x) | x ∈
N(u) ∩N(v)} and remove v from G. If G contains a K4, then return no.

Claim 3.19. Rule 12 is safe for K4-free input, takes polynomial time and does
not affect any vertex of N0. Moreover, if we have not obtained a no-answer,
then afterwards G is a connected (H,K4)-free graph, in which we can define sets
N1, N2, N3, A1, A2 as before.

34

Proof of Claim. Note that by Claim 3.8, G is K4-free before the application of
Rule 12. Hence N(u) ∩ N(v) is an independent set. Let w be the new vertex
obtained from identifying N(u) ∩N(v). Observe that every vertex in the common
neighbourhood of two adjacent vertices must receive the same colour. Hence
w can be given the same colour as any vertex of N(u) ∩ N(v), which belongs
to ⋂{L(x) | x ∈ N(u) ∩ N(v)}. For the reverse direction, we give each vertex
x ∈ N(u) ∩ N(v) the colour of w, which belongs to L(x) by definition. As
|L(v)| = 3 and N(v) \N(u) = {u}, we have a colour available for v. The above
means that (G,L) is a no-instance if a K4 is created. We conclude that Rule 12 is
safe and either yields a no-instance if a K4 was created, or afterwards we have
again that G is K4-free.

It is readily seen that applying Rule 12 takes polynomial time and that
afterwards G is still connected. As |L(v)| = 3, Claim 3.12 tells us that v ∈ N2,
and thus N(v) ⊆ N1 ∪N2 ∪N3. Thus Rule 12 does not involve any vertex of N0.
Hence, as G is connected, we can define V = N0 ∪N1 ∪N2 ∪N3 by Claim 3.6.

It remains to prove that G is H-free after applying Rule 12. For contradiction,
assume that G has an induced subgraph P + P ′ isomorphic to H. Then we find
that w ∈ V (P) ∪ V (P ′), say w ∈ V (P), as otherwise P + P ′ was already an
induced subgraph of G before Rule 12 was applied. By the same argument, we
find that w is incident with two edges wx and wy in P that correspond to edges
sx and ty with s ̸= t in G before Rule 12 was applied. However, then we can
replace P by the path xsuty to find again that G already contained an induced
copy of H before Rule 12 was applied, a contradiction. ♢

Let u ∈ A2. We let B(u) be the set of neighbours of u that have colour 3 in
their list. By Rule 9, there is a vertex v ∈ N(u) such that 3 ∈ L(v). Vertex v
cannot be in N1; otherwise the edge uv implies that v ∈ A1 and thus v would
have list {1, 2}. This means that v must be in N2 ∪N3. Hence we have proven
the following claim.
Claim 3.20. For every u ∈ A2, it holds that B(u) ̸= ∅ and B(u) ⊆ N2 ∪N3.

We will use the following rule (in Claim 3.21 we show that the colour q is
unique).

Rule 13 (A2 list-reduction) If a vertex v ∈ B(u) for some u ∈ A2 has no
neighbour outside N [u], then remove colour q from L(u) for q ∈ L(v)\{3}.

Claim 3.21. Rule 13 is safe, takes polynomial time and does not affect any vertex
of N0. Moreover, afterwards G is a connected (H,K4)-free graph, in which we can
define sets N1, N2, N3, A1, A2 as before.

Proof of Claim. Let u be a vertex in A2 for which there exists a vertex v ∈ B(u)
with no neighbour outside N [u]. It is readily seen that Rule 13 applied on u takes
polynomial time, does not affect any vertex of N0, and afterwards we can define
sets N1, N2, N3, A1, A2 as before.

We recall from above that v ∈ N2 ∪N3. As N(v)\N [u] = ∅, we find by Rule 12
that |L(v)| ̸= 3. Then, by Rule 4, it holds that |L(v)| = 2. Thus vertex v has
L(v) = {q, 3} for some q ∈ {1, 2}. If there exists a colouring c of G with c(u) = q
that respects L, then c(v) = 3, and so c colours each vertex in N(v) ∩N(u) with
a colour from {1, 2}.

35

We define a colouring c′ by setting c′(u) = 3, c′(v) = q and c′ = c for
V (G) \ {u, v}. We claim that c′ also respects L. As N(v) \ N [u] = ∅, every
neighbour w ≠ u of v is a neighbour of u as well and thus received a colour
c′(w) = c(w) that is not equal to colour q (and colour 3). As v ∈ N2 ∪ N3 by
Claim 3.20, all vertices in N(u) \N [v] are in N1 by Claim 3.7. As u ∈ A2, these
vertices all belong to A1 and thus their lists are equal to {1, 2}, so do not contain
colour 3. Hence, c′ respects L indeed.

The above means that we can avoid assigning colour q to u. We may therefore
remove q from L(u). This completes the proof of the claim. ♢

We note that if a colour q is removed from the list of some vertex u ∈ A2 due
to Rule 13, then u is no longer active.

Assume that Rules 1–13 have been applied exhaustively. By Rule 2, we find
that A2 ≠ ∅. Then we continue as follows. Let u ∈ A2 and v ∈ B(u) (recall that
B(u) is nonempty due to Claim 3.20). Let A(u, v) ⊆ N1 be the set of (active)
neighbours of u that are not adjacent to v. Note that A(u, v) ⊆ A1 by definition.
Let A(v, u) ⊆ N1 be the set of neighbours of v that are not adjacent to u. We
claim that both A(u, v) and A(v, u) are nonempty. By Rule 13, we find that
A(v, u) ̸= ∅. By Rule 12, vertex u has a neighbour t /∈ N(v). As v ∈ N2 ∪N3 due
to Claim 3.20, we find by Claim 3.7 that t belongs to N1, thus t ∈ A(u, v), and
consequently, A(u, v) ̸= ∅. We have the following three disjoint situations:

1. A(v, u) contains a vertex w with L(w) = {1, 2} that is not adjacent to some
vertex t ∈ A(u, v);

2. A(v, u) contain at least one vertex w that is not adjacent to some vertex
t ∈ A(u, v), but for all such vertices w it holds that L(w) ̸= {1, 2}.

3. Every vertex in A(v, u) is adjacent to every vertex of A(u, v).

Now we construct a triple (Q,P, x) = (Q(u), P (u), x(u)) such that Q is a set
which contains u, P ⊆ Q is an induced P4 and x is a vertex of Q. In situation
1, we let Q = {w, t, u, v}. We say that Q is of type 1. We let x = u. As P
we can take the path on vertices t, u, v, w in that order. In situation 2, we let
Q = {w, t, u, v} for some w ∈ A(v, u) that is not adjacent to some t ∈ A(u, v).
We say that Q is of type 2. We let x = v. As P we can take the path on vertices
t, u, v, w in that order.

Finally we consider situation 3. By Rule 7 applied on u and a vertex of A(v, u)
we find that N(u) ∩N(v) contains at least one vertex s. We let Q = {s, t, w, u, v}
for some w ∈ A(v, u) and t ∈ A(u, v). We let x = v. We claim that the vertices
s, u, t, w induce a P4 in that order. By definition, u is not adjacent to w. If
sw ∈ E(G), then L(u) = L(w) due to Rule 6. As w has a list of size 2, u has also
a list of size 2. If st ∈ E(G), then L(v) = L(t) due to Rule 6. In that case it
even holds that |L(v)| = |L(t)| = 1, which means that u has a list of size 2 due to
Rule 5. In both cases u is not an active vertex, a contradiction. Hence, as P we
can take the path on vertices s, u, t, w in that order.

We slightly try to extend Q as follows. If A(u, v) contains more vertices than
only vertex t, we pick an arbitrary vertex t′ of A(u, v) \ {t} and put t′ to Q. We
first observe that if c(x) = 3 no other vertex of Q can be coloured with colour 3;
in particular recall that t and t′ (if t′ exists) both belong to A1, and as such have

36

list {1, 2}. Moreover, if Q is of type 2, then any vertex in A(v, u) with list {1, 2}
is adjacent to t and t′, as otherwise Q is of type 1.

Branching VI (O(n) branches). We choose a vertex u ∈ A2 such that |N(u)∩
N1| is minimal and create (Q,P, x). We branch by considering all possibilities
of colouring Q such that c(x) = 3 and the possibility where we remove colour 3
from L(x). The first case leads to O(1) branches, since |Q| ≤ 6. We will prove
that we either terminate by Rule 2 or branch in Branching VII. In the second
case we deactivate u directly or by applying Rule 13 and Rule 5. This is the only
recursive branch and the depth of the recursion is |A2| ∈ O(n).

Now consider a branch where Q is coloured. Although by Rule 4 vertices in Q
will need to be removed from G, we make an exception by temporarily keeping
Q in the graph after we coloured it until the end of Branching VII. The reason
is that this will be helpful for analysing the structure of (G,L). We run only
Rules 2, 5 and 8 to prevent changes in the size of neighbourhood of vertices in A2
for the purposes of the next claim (Claim 3.22). Observe that Rules 2, 5 and 8 do
not decrease the degree of any vertex. By Rule 2, A2 ̸= ∅. We prove the following
claim for vertices in A2.

Claim 3.22. There is no vertex in A2 with more than one neighbour in A1.

Proof of Claim. For contradiction, assume that r is a vertex in A2 with two
neighbours s and s′ in A1. By Rule 8, s and s′ are not adjacent. Hence the set
{s, r, s′} induces a P3, which we denote by P ′. As every vertex in A1 has list
{1, 2}, the only possible edges between Q and P ′ are those between {s, s′} and
vertex x, the only vertex in Q which has colour 3.

First suppose Q is of type 1. Recall that x = u. If |N(u) ∩ A1| = 1, then u
cannot have any other vertex in A1 \Q as a neighbour. If |N(u) ∩ A1| ≥ 2, then
there has to be an edge to all but one vertex in N(r) ∩ A1. This together with
at least two coloured vertices in Q ∩ N(u) ∩ N1 gives a contradiction with the
minimality of |N(u) ∩N1|.

Now suppose that Q is of type 2. Recall that x = v. Recall also that if v
is adjacent to a vertex in A1 \ Q, then this vertex must be adjacent to another
vertex from Q as well, since otherwise Q would be of type 1. This is not possible
since all of them are already coloured by colour in {1, 2}.

Finally, suppose that Q is of type 3. Recall that x is not in P , thus there is
no vertex with list {1, 2} adjacent to P .

We conclude that in all three cases Q∪V (P ′), and thus G, contains an induced
P3 + P4, a contradiction. ♢

We now run reduction Rules 1–13 exhaustively (and in the right order).
Recall, however, that we make exception by not erasing Q. We continue with
Branching VII.

Branching VII (O(n) branches). We branch by considering the possibility of
removing colour 3 from the list of each vertex in A2, and all possibilities of choosing
one vertex in A2, to which we give colour 3, and all possibilities of colouring its
neighbour in A1 (recall that this neighbour is unique due to Claim 3.22). This

37

Q
P

q

z1

z2 z3

z

r1

r3 r2

r

Figure 3.4: The situation in Branching VII. Dashed lines denote edges that might
or might not be there.

leads to O(n) branches. We show that all of them are instances with no vertex
with list of size three and thus Rule 2 can be applied on them.

In the first branch, all lists have size at most 2 directly by the construction.
Now consider a branch where a vertex r ∈ A2 and its unique neighbour in A1

were coloured (where r is given colour 3). We make an exception to Rule 4 and
temporarily keep vertex r and all its neighbours in G, even if they need to be
removed from G due to our rules.

Denote the vertex in N(r) ∩ A1 by r1. Recall that L(r1) = {1, 2} and that
every vertex in A2 has exactly one neighbour in A1. Note that |N(u) ∩ A1| was
equal to 1 before u was coloured. Before assigning a colour to r, vertex r had two
other neighbours r2 and r3 by Rule 10, which were in N2 ∩N3. Vertices r1, r, r2
as well as r1, r, r3 induce a P3, otherwise, there is either a K4 or we use Rule 12
on vertex r. As G is P3 + P4-free, there must be at least one edge between P and
{r1, r, r2} and between P and {r1, r, r3}. We first show that such an edge is not
incident to r1.

If there exists an edge between r1 and a vertex from P , then this vertex must
be x (as L(r1) = {1, 2}). First suppose Q is of type 1. Then x = u. However, u
had only one neighbour in A1, which is in Q, a contradiction. Now suppose Q
is of type 2. Then x = v. If r1 is adjacent to v, then r1 is adjacent to another
vertex in Q, a contradiction. Finally suppose that Q is of type 3. Then x in not
in P . Thus r1 is not adjacent to P .

We conclude from the above that there must exist an edge between r2 and a
vertex of P , and an edge between r3 and a vertex of P . By Rule 6, these neighbours
of r2 and r3 must be different. We show that vertices r2 and r3 received a colour,
since r2 and r3 have a different neighbour in Q and thus at least one neighbour
has obtained a colour different from 3. Since r is coloured by 3, the lists of r2 and
r3 are reduced by Rule 5 to size 1 or the instance is a no-instance.

For sake of contradiction assume that there exists a vertex z with list of
size three, i.e., z ∈ A2. Note that |N(z) ∩ A1| = 1. The same observations
for neighbours of z hold by the same arguments as above. Namely, vertex
z1 ∈ N(z) ∩ A1 does not have a neighbour in P and vertices z2, z3 are in N2 ∪N3
and they induce two P3s: z1, z, z2 and z1, z, z3. Therefore, z2, z3 each have different
neighbours in P , too. Moreover, at least one edge between r1 and z2, z3 is missing

38

by Rule 6. Without loss of generality {r1, z2} /∈ E. Then vertices z1, z, z2, q, where
q is in N(z2) ∩ V (P), induce a new P4. Again at least one vertex from r2, r3 is
not adjacent to q, say r2q /∈ E. As r1 and r2 are coloured by 1 or 2, they have
no edge to z1 and to z; otherwise z and z1 are not active by Rule 5. Recall that
r1, z1 have no neighbour in P and that r had only one neighbour in A1, thus r
is not adjacent to z1. By Claim 3.11 there are no edges between r2, r3 and z2, z3.
Hence r1, r, r2 together with z1, z, z2, q induce a P3 + P4 in G, a contradiction (see
Figure 3.4 for an example of such a situation).

The correctness of our algorithm follows from the above description. It remains
to analyse its running time. The branching is done in seven stages (Branching
I-VII) yielding a total number of O(n49) branches. It is readily seen that processing
each branch created in Branching I-VII takes polynomial time. Hence the total
running time of our algorithm is polynomial.

Remark. Except for Phase 4 of our algorithm, all arguments in our proof hold
for (P3 + P5)-free graphs. The difficulty in Phase 4 is that in contrary to the
previous phases we cannot use the vertices from N0 to find an induced P3 + P5
and therefore obtain the contradiction similarly to the previous phases.

3.3 The Proof of Corollary 3.2
By combining our new results from Section 3.2 with known results from the
literature we can now prove Corollary 3.2.
Corollary 3.2 (restated). Let H be a graph with |V (H) ≤ 7. If H is a linear
forest, then List 3-Colouring is polynomial-time solvable for H-free graphs;
otherwise already 3-Colouring is NP-complete for H-free graphs.

Proof. If H is not a linear forest, then H contains an induced claw or a cycle, which
means that 3-Colouring is NP-complete due to results in [56, 89, 115]. Suppose
H is a linear forest. We first recall that List 3-Colouring is polynomial-time
solvable for P7-free graphs [27] and thus for (rP1 +P7)-free graphs for every integer
r ≥ 0 [19, 77]. Now suppose that H is not an induced subgraph of rP1 + P7 for
any r ≥ 0. If H = P1 + 3P2, then the class of H-free graphs is a subclass of
4P3-free graphs, for which List 3-Colouring is polynomial-time solvable [19, 77].
Otherwise, H has at least two connected components, all of which containing at
least one edge. This means that H ∈ {2P2 +P3, P2 +P5, P3 +P4}. If H = 2P2 +P3,
then the class of H-free graphs is a subclass of 4P3-free graphs, for which we just
recalled that List 3-Colouring is polynomial-time solvable. The cases where
H = P2 + P5 and H = P3 + P4 follow from Theorem 3.1.

3.4 Conclusions
By solving two new cases we completed the complexity classifications of 3-
Colouring and List 3-Colouring on H-free graphs for graphs H up to
seven vertices. We showed that both problems become polynomial-time solvable if
H is a linear forest, while they stay NP-complete in all other cases. Chudnovsky et
al. improved our results in a recent arXiv paper [26] that appeared after our paper

39

by showing that List 3-Colouring is polynomial-time solvable on (rP3 +P6)-free
graphs for any r ≥ 0. In the same paper, they also proved that 5-Colouring
is NP-complete for (P2 + P5)-free graphs. Recall that k-Colouring (k ≥ 3) is
NP-complete on H-free graphs whenever H is not a linear forest. For the case
where H is a linear forest, the NP-hardness result of [26] for 5-Colouring for
(P2 + P5)-free graphs, together with the known NP-hardness results of [90] for
4-Colouring for P7-free graphs and 5-Colouring for P6-free graphs, bounds
the number of open cases of k-Colouring from above.

For future research, we remark that it is still not known if there exists a linear
forest H such that 3-Colouring is NP-complete for H-free graphs. This is a
notorious open problem studied in many papers; for a recent discussion see [79].
It is also open for List 3-Colouring, where an affirmative answer to one of
the two problems yields an affirmative answer to the other one [78]. In the line
of our proof method, we pose the question if 3-Colouring is polynomial-time
solvable on (P2 + Pt−2)-free graphs for some t ≥ 3 whenever 3-Colouring is
polynomial-time solvable for Pt-free graphs.

For k ≥ 4, we emphasize that all open cases involve linear forests H whose
connected components are small. For instance, if H has at most six vertices,
then the polynomial-time algorithm for 4-Precolouring Extension on P6-free
graphs [28, 29] implies that there are only three graphs H with |V (H)| ≤ 6 for
which we do not know the complexity of 4-Colouring on H-free graphs, namely
H ∈ {P1 + P2 + P3, P2 + P4, 2P3} (see [77]).

The main difficulty to extend the known complexity results is that hereditary
graph classes characterized by a forbidden induced linear forest are still not
sufficiently well understood due to their rich structure (proofs of algorithmic
results for these graph classes are therefore often long and technical; see also, for
example, [15, 28, 29]). We need a better understanding of these graph classes in
order to make further progress. This is not only the case for the two colouring
problems in this paper. For example, the Independent Set problem is known
to be polynomial-time solvable for P6-free graphs [83], but it is not known if there
exists a linear forest H such that it is NP-complete for H-free graphs. A similar
situation holds for Odd Cycle Transversal and Feedback Vertex Set
and a whole range of other problems; see [13] for a survey.

Acknowledgments. We thank Karel Král for pointing out a mistake in a
preliminary version of our paper.

40

4. Survey on Fair problems
In 1978 Yannakakis defined the notion of Deletion problems [145]. The task is to
find a set of vertices (or edges) such that the graph after the removal of the found
set satisfies a given property. Many classical graph problems can be reformulated
in this way. For example, Vertex Cover is a set of vertices such that the rest of
the graph is edgeless. An example of an edge deletion problem is feedback edge
set, where the graph has to be a forest after the removal of edges. Usually, the
size of the deleted set is minimized in such problems.

Fair problems have been first defined and studied by Lin and Sahni in 1989 [117].
They reused a definition of deletion problems but instead of minimizing the size
of the deleted set F , they proposed a different optimization function, where
maxv∈V (G) degF (v) is minimized. We call them fair edge deletion problems. They
examined several specific fair edge deletion problems. Since then fair problems
have not been studied for several years. The notion was briefly investigated by
Kolman, Lidický and Sereni in years 2009–10 [104]1 and [103]. They show an
interesting connection with improper coloring. Recently, a systematic study of
metatheorems involving fair problems [122, 102, 100] have been started, (See also
Chapter 5 that contains all the results from [102]). They also proposed to start
a study of some particular fair vertex deletion problems. In [102] they started a
study of the fair vertex cover problem.

4.1 Definition of Fair Problems
Several different variants have been studied. Let G = (V,E) be a graph.

The fair cost of a set W ⊆ V is defined as maxv∈V |N(v) ∩W |. The fair cost
of a set F ⊆ E is defined as maxv∈V degF (v), where degF (v) is the degree of the
vertex v in graph G′ = (V, F).

We present two different definitions of fair problems: the deletion and the
evaluation variant. The evaluation is more powerful as it uses formulas with free
variables. Also, we need to distinguish the vertex and edge version. In each,
the appropriate fair cost is used. Therefore, we present four separate template
definitions, each of them is modified by a graph logic L.

Fair Vertex L Deletion
Instance: An undirected graph G = (V,E) and a positive integer k,

an L sentence φ.
Question: Is there a set W ⊆ V of fair cost at most k such that

G \W |= φ?

Fair Edge L Deletion
Instance: An undirected graph G = (V,E) and a positive integer k,

an L sentence φ.
Question: Is there a set F ⊆ E of fair cost at most k such that

G \ F |= φ?

1Paper [104] appeared also under a slightly different name [105].

41

To increase the power of the logic we can add free variables. Let φ(X1, . . . , Xℓ)
be a formula with one free variable and let G = (V,E) be a graph. For sets
W1, . . . ,Wℓ ⊆ V , by φ(W1, . . . ,Wℓ) we mean that we substitute Wi for Xi in
φ.We do it analogically for sets of edges.

ℓ-Fair Vertex L Evaluation
Instance: An undirected graph G = (V,E) and a positive integer k,

an L formula φ(X1, . . . , Xℓ) with ℓ free variables.
Question: Are there sets W1, . . . ,Wℓ of vertices each of fair cost at

most k such that G |= φ(W1, . . . ,Wℓ)?

ℓ-Fair Edge L Evaluation
Instance: An undirected graph G = (V,E) and a positive integer k,

an L formula φ(X1, . . . , Xℓ) with ℓ free variables.
Question: Are there sets F1, . . . , Fℓ of edges each of fair cost at most

k such that G |= φ(F1, . . . , Fℓ)?

We shortcut Fair Vertex as FV and Fair Edge as FE. When we talk about
both in general then a shortcut FX is used. Naturally, a special evaluation variant
with only one free variable, 1-FX L Evaluation, has been extensively studied.
There the number of free variables in the name of the metatheorem is omitted in
the rest of the paper, therefore they are denoted as FX L Evaluation. This
problem is called Generalized Fair L Vertex-Deletion in [122] and in its
conference version [121], however, we believe that evaluation is a more suitable
expression and moreover, it coincides with standard terminology in logic.

We would like to point out one crucial difference between deletion and evalua-
tion problems, namely that in evaluation problems we have access to the variable
that represents the solution. This enables evaluation problems to impose some
conditions on the solution, e.g., we can ensure that the graph induced by the
solution has a diameter at most 2 or that it is triangle-free.

Recall, in dense graph classes, one cannot obtain an MSO2 model checking
algorithm running in FPT-time, in fact, MSO2 on cliques is not even in XP unless
E = NE [36, 112]. That is a reason why parameterized algorithms for edge
evaluation problems might be problematic or probably even impossible in the
dense context.

4.2 Specific Problems
Here, we discuss the studied specific fair problems together with corresponding
results.

4.2.1 Edge Problems
Fair Feedback Edge Set Lin and Sahni [117] showed that the Fair Feedback
Edge Set problem, the resulting graph needs to be a forrest2, is NP-complete.

2In fact, in the original paper only fair deletion into a tree was mention. However, this more
classical formulation does not change the complexity.

42

Interestingly, they also show that a variant of this problem, fair deletion into a
weakly-connected directed acyclic graph, is solvable in linear time on directed
graphs.

Fair Odd Cycle Transversal, (k, d)-coloring (defective coloring) Kol-
man, Lidický, and Sereni [104] studied the Fair Odd Cycle Transversal
problem. There, the resulting graph needs to be bipartite. They provide Θ(

√
(n))-

approximation algorithm and a polynomial-time algorithm whenever the input
graph has bounded tree-width.

Kolman, Lidický and Sereni [104, 103] brought up the connection of the Fair
Odd Cycle Transversal (Fair OCT) with (2, d)-coloring. Defective colorings
(also known as improper colorings), here denoted as (k, d)-coloring of a graph
G = (V,E) is defined as a partition of V into k parts such that each part induces
a subgraph of G with maximum degree at most d. Note that the standard proper
k-coloring is exactly (k, 0)-coloring. Observe that a graph has a (2, d)-coloring
if and only if it has a Fair OCT of the fair cost at most d. More generally,
(k, d)-coloring is exactly Fair partition of Vertices into the independent set with
the fair edge cost at most d. In this light, (k, d)-coloring can be expressed in
the framework of Fair Edge MSO1 Deletion. For G = (V,E) we express the
problem by the following formula and by bounding the fair cost by d.

∃X1, . . . , Xk ⊆ V s.t. ∀i ∈ {1, . . . , k}∀u, v ∈ Xi {u, v} /∈ E.

Defective colorings have been introduced in 1986 [40], but the history originated
in as far as 1974 [94]. It developed into a very extensive area of research studied
both as a theoretical notion [87, 147, 144] as well as a practical tool [86, 95].
For the details cf. a survey by Frick [64] from 1993, or a very recent survey by
Wood [143] from 2018. Plenty of related results are already known and described.
In the spirit of complexity we mention that (2, d)-coloring problem for d ≥ 1 is
NP-complete on planar graphs [32, 39]. Recentlay (2018–19), two papers about
parameterized complexity of defective colorings appered [8] and [84]3.

Paper [84] defines a variant of defective coloring called Weighted Improper
Coloring. For an arc-weighted directed graph D = (V,A) with weight function
w : A → [0, 1] W eighted Improper k-coloring is defined as a mapping c : V → k
such that for each vertex v of color a it holds:∑

c(u)=a∧(u,v)∈A

w(u, v) < 1.

They show that (k, d)-coloring can be reduced in polynomial time to weighted
improper k-coloring. This reduction only multiplies by 2 the number of edges so
their FPT results can be translated into the setting of (k, d)-coloring. They claim
an FPT algorithm parameterized by tree-width and maximum degree.

Paper [8] shows W-hardness of (k, d)-coloring parameterized by treedepth for
any fixed k ≥ 2. The problem is also W-hard for k = 2 parameterized by feedback
vertex set. Surprisingly, the problem turns out to be in FPT for larger fixed k > 2
when parameterized by feedback vertex set. They also show that whenever all
three k, d and treewidth are parameters then the problem is in FPT. Moreover,

3Paper [84] is an extended version of the published paper [85].

43

the authors show various approximation algorithms in this setting. Last, they
show that the problem is in FPT parameterized by vertex cover. This is also
implied by the vertex cover metatheorem in [122] and the observation that the
number k is always bounded by vertex cover since otherwise it is a yes-instance.

Minimum Fair Cut Kolman, Lidický, and Sereni [104] propose a study of the
Fair s, t-Cut problem. There, the resulting graph has vertex s in a different
component than vertex t. They also provide Θ(

√
(n))-approximation algorithm

and a polynomial-time algorithm whenever the input graph is series-parallel.
Those graphs have treewidth at most 2. Moreover, they hinted how to extend
such algorithm to graphs of bounded tree-width.

4.2.2 Vertex Problems
In general, the study of the Fair Vertex Deletion problems appeared explicitly
much later. Up to our best knowledge, it was first formulated in 2017 [121].

Fair Vertex Cover The study of one particular problem Fair Vertex Deletion
problem, Fair Vertex Cover, was proposed in [102]. The authors show that
this problem is W[1]-hard parameterized by treedepth and feedback vertex set
combined. On the other hand, they propose an FPT algorithm parameterized by
modular-width.

4.3 Metatheorems
In [104] the authors proposed a search for a general metatheorem involving fair
problems. Soon after, the same authors provide the first result in this direction
in [103]. They show that every Fair Edge MSO2 Deletion problem is solvable in
XP time parameterized by tree-width of the graph. According to to [122] their
approach can be straightforwardly transformed to Fair Vertex MSO2 Deletion
problems. This result was later extended to even more powerful logic in [100]
using an interesting method of CSP reformulations.

4.3.1 FPT Results
Table 4.1 summarizes FPT results. In this Table, we are focused on the com-
bination of the expressive power of logic and the structural class. That means
that ETH-based lower bounds are not discussed here, despite they might matter,
see [122] for details. There a stronger lower bound was derived for a more powerful
logic and a slightly stronger parameter. Refer to Figure 4.1 to compare the results
between edge and vertex variant on the hierarchy of parameters.

4.4 Open Problems and Further Research Di-
rection

There are many possible directions for future research.

44

Left part of the table vc fvs + td tc
Fair Vertex Cover ✓ [102] ✓
FV L Deletion MSO2 ✓ L∅ ✓ MSO1 ✓
FV L Evaluation MSO2 [122] L∅ ✓ MSO1 [102]
ℓ-FV L Evaluation MSO1 ✓ L∅ ✓ MSO1 [102]
FE L Deletion MSO2 ✓ FO [122] ?
FE L Evaluation MSO2 [122] FO ✓ ?
Right part of the table nd cvd mw
Fair Vertex Cover ✓ ? [102]
FV L Deletion MSO1 ✓ ? ?
FV L Evaluation MSO1 ✓ ? ?
ℓ-FV L Evaluation MSO1 [100] MSO1 ✓ MSO1 ✓
FE L Deletion ? FO [102] ?
FE L Evaluation ? FO ✓ ?

Table 4.1: The table summarize metatheorem results (with a citation), in terms
of FPT complexity and used logic, parameterized by structural parameters. Green
cells denote FPT results and red cells represent hardness results. Logic L in
metatheorems is specified by a logic used in the respective theorem. Symbol L∅
denotes any logic that can express an edgeless graph. Symbol ✓denotes implied
results. A question mark (?) indicates that the complexity is unknown. Fair
edge problems are delimited from fair vertex problems since there are no apparent
relations between them.

Metatheorems—Fair Edge problems In terms of methatheorems, the largest
yet unsolved group are edge problems. Compare the known results in Table 4.1.
In particular, there are no results (except for implied harndnesses) for the ℓ-FE
L Evaluation problem. The systematic step is to determine the complexity of
any fair edge problem on neighborhood diversity. Last but not least, it would be
interesting to formulate a “basic” edge deletion problem that is by itself NP-hard.
In a similar spirit as Fair Vertex Cover is a somewhat basic problem for vertex
deletion problems.

Metatheorems—Fair Vertex problems The logical next step in the investi-
gation of Fair Vertex metatheorems is a study of parameterization by modular-
width and cluster vertex deletion. In hardness results, it might be useful to
explore Marx and Pilipczuk subgraph isomorphism problem [120] to obtain a
better ETH-based lower bound.

Future extensions of Fair Framework Previously, an FPT algorithm for
evaluation of a fair objective was given for parameter neighborhood diversity [122].
That algorithm was extended [100] to a so-called local linear constraints which
are defined for every vertex v ∈ V (G). Each vertex gets two positive integers
ℓ(v), u(v), the lower and the upper bound, and the task is to find a set X that not
only G |= φ(X) but for each v ∈ V (G) it holds that ℓ(v) ≤ |N(v) ∩X| ≤ u(v).
Note that this is a generalization as fair cost t can be tested in this framework by
setting ℓ(v) = 0 and u(v) = t for every v ∈ V (G). Is this extension possible for

45

cw

tw mw

cvd

sd

nd
tc

fvs
td

vc

cw

tw mw

cvd

sd

nd
tc

fvs
td

vc

Figure 4.1: Hierarchy of graph parameters with depicted complexity of the
Fair L Vertex Evaluation problem on the left side and the Fair L Vertex
Evaluation problem on the right side. An arrow indicates that a graph parameter
upper-bounds the other. Thus, hardness results are implied in the direction of
arrows, and FPT algorithms are implied in the reverse direction. Green colors
indicate FPT results for MSO2, orange are FPT for MSO1, blue are open, and
red are hardness results. Descriptions of the relations and parameteres are in
Section 2.2.1.

other graph parameters, for example, the twin cover number?

Specific fair Vertex problems Besides Fair Vertex Cover nothing more has
been considered in terms of specific Fair Vertex Deletion problems. We propose
a variant of well-studied problems, for instance, Fair Dominating Set or Fair
Feedback Vertex Set.

Parametrization by the fair cost It will be interesting to explore the com-
plexity for parameterization by the “natural parameter”. Our proposal is to
explore the parameterization by the fair cost in addition to the size of the formula.
This can be seen as a natural parameter since it plays a similar to the size of the
solution in the classical problems.

46

5. Methatheorems for Fair
Problems

5.1 Introduction
A prototypical graph problem is centered around a fixed property for a set of
vertices. A solution is any set of vertices for which the given property holds. In a
similar manner, one can define the solution as a set of vertices such that the given
property holds when we remove this set of vertices from the input graph. This
leads to the introduction of deletion problems—a standard reformulation of some
classical problems in combinatorial optimization introduced by Yannakakis [146].
Formally, for a graph property π we formulate a vertex deletion problem. That
is, given a graph G = (V,E), find the smallest possible set of vertices W such
that G \W satisfies the property π. Many classical problems can be formulated
in this way such as Minimum Vertex Cover (π describes an edgeless graph) or
Minimum Feedback Vertex Set (π is valid for forests). Of course, the com-
plexity is determined by the desired property π but most of these problems are
NP-complete [145, 3, 109].

Clearly, the complexity of a graph problem is governed by the associated
predicate π. We can either study one particular problem or a broader class of
problems with related graph-theoretic properties. One such relation comes from
logic, for example, two properties are related if it is possible to express both by a
first order (FO) formula. Then, it is possible to design a model checking algorithm
that for any property π expressible in the fixed logic decides whether the input
graph with the vertices from W removed satisfies π or not.

Undoubtedly, Courcelle’s Theorem [33] for graph properties expressible in
the monadic second-order logic (MSO) on graphs of bounded treewidth plays
a prime role among model checking algorithms. In particular, Courcelle’s Theorem
provides for an MSO sentence φ an algorithm that given an n-vertex graph G
with treewidth k decides whether φ holds in G in time f(k, |φ|)n, where f is some
computable function and |φ| is the quantifier depth of φ. In terms of parameterized
complexity, such an algorithm is called fixed-parameter tractable (the problem
belongs to the class FPT for the combined parameter k+ |φ|). We refer the reader
to monographs [41, 51] for background on parameterized complexity theory and
algorithm design. There are many more FPT model-checking algorithms, e.g.,
an algorithm for (existential counting) modal logic model checking on graphs of
bounded treewidth [129], MSO model checking on graphs of bounded neighborhood
diversity [111], or MSO model checking on graphs of bounded shrubdepth [73]
(generalizing the previous result). First order logic (FO) model checking received
recently quite some attention as well and algorithms for graphs with bounded
degree [133], nowhere dense graphs [81], and some dense graph classes [67] were
given.

Kernelization is one of the most prominent techniques for designing FPT
algorithms [61]. It is a preprocessing routine that in polynomial time reduces the
input instance to an equivalent one whose size and parameter value can be upper-
bounded in terms of the input (i.e., original) parameter value. It should be noted

47

that kernelization is not really common for model checking algorithms.1 There are
few notable exceptions—the result of Lampis [111] (see Proposition 5.7) was, up
to our knowledge, the first result of this kind. Lampis [111] presented a kernel for
MSO1 model checking in graphs of bounded neighborhood diversity (of exponential
size in quantifier depth). The aforementioned result has been recently followed
by Gajarský and Hliněný [66] who showed a kernel for MSO1 model checking in
graphs of bounded shrubdepth (a parameter generalizing neighborhood diversity,
twin cover, and treedepth). It is worth noting that it was possible to use the
kernel of [111] to extend his model checking algorithm for so-called fair objectives
and their generalizations [122, 100]. In this work, we continue this line of research.

Fair Objective. Fair deletion problems, introduced by Lin and Sahni [117], are
such modifications of deletion problems where instead of minimizing the size of
the deleted set we change the objective. The Fair Vertex Deletion problem
is defined as follows. For a given graph G = (V,E) and a property π, the task
is to find a set W ⊆ V which minimizes the maximum number of neighbors in
the set W over all vertices, such that the property π holds in G \W . Intuitively,
the solution should not be concentrated in a neighborhood of any vertex. In
order to classify (fair) vertex deletion problems we study the associated decision
version, that is, we are interested in finding a set W of size at most k, for a given
number k. Note that this can introduce only polynomial slowdown, as the value
of our objective is bounded by 0 from below and by the number of vertices of
the input graph from above. Since we are about to use a formula with a free
variable X to express the desired property π, we naturally use X to represent the
set of deleted vertices in the formula. The fair cost of a set W ⊆ V is defined as
maxv∈V |N(v) ∩ W |. We refer to the function that assigns each set W ⊆ V its
fair cost as to the fair objective function. Here, we give a formal definition of the
computational problem when the property π is defined in some logic L.

Fair L Vertex Deletion
Instance: An undirected graph G = (V,E) and a positive integer k,

an L sentence φ.
Question: Is there a set W ⊆ V of fair cost at most k such that

G \W |= φ?

Let φ(X) be a formula with one free variable and let G = (V,E) be a graph. For
a set W ⊆ V by φ(W) we mean that we substitute W for X in φ. The definition
bellow can be naturally generalized to contain ℓ free variables. We would like to
point out one crucial difference between deletion and evaluation problems, namely
that in evaluation problems we have access to the variable that represents the
solution. This enables evaluation problems to impose some conditions on the
solution, e.g., we can ensure that the graph induced by the solution has diameter
at most 2 or is triangle-free.

1We are aware of the equivalence of FPT and kernels (cf. [41]), however, we would like to
point out that the difference between a directly applicable set of rules and a theoretical bound
is large.

48

Fair L Vertex Evaluation2

Instance: An undirected graph G = (V,E) and a positive integer k,
an L formula φ(X) with one free variable.

Question: Is there a set W ⊆ V of fair cost at most k such that
G |= φ(W)?

One can define edge deletion problems in a similar way as vertex deletion
problems.

Fair L edge deletion
Instance: An undirected graph G = (V,E), an L sentence φ, and

a positive integer k.
Question: Is there a set F ⊆ E such that G \ F |= φ and for every

vertex v of G, it holds that |{e ∈ F : e ∋ v}| ≤ k?

The evaluation variant is analogical. Recall, in dense graph classes, one cannot
obtain an MSO2 model checking algorithm running in FPT-time [112]. That is
the reason why evaluation problems do not make sense in this context. In sparse
graph classes, this problem was studied in [122] where W[1]-hardness was obtained
for Fair FO Edge Deletion on graphs of bounded treedepth and FPT algorithm
was derived for Fair MSO2 Edge Evaluation on graphs of bounded vertex cover.

Minimizing the fair cost arises naturally for edge problems in many situations
as well, e.g., in defective coloring [40], which has been substantially studied from
the practical network communication point of view [86, 95]. A graph G = (V,E)
is (k, d)-colorable if every vertex can be assigned a color from the set [k] in such
a way that every vertex has at most d neighbors of the same color. This problem
can be reformulated in terms of fair deletion; we aim to find a set of edges F such
that graph G′ = (V, F) has maximum degree d and G \ F can be partitioned into
k independent sets.

Related results. There are several possible research directions once a model
checking algorithm is known. One possibility is to broaden the result either by
enlarging the class of graphs it works for or by extending the expressive power of
the concerned logic, e.g., by introducing a new predicate [106]. Another obvious
possibility is to find the exact complexity of the general model checking problem
by providing better algorithms (e.g., for subclasses [111]) and/or lower bounds
for the problem [65, 112]. Finally, one may instead of deciding a sentence turn
attention to finding a set satisfying a formula with a free variable that is optimal
with respect to some objective function [6, 37, 74]. In this work, we take the last
presented approach—extending a previous work on MSO model checking for the
fair objective function.

When extending a model checking result to incorporate an objective function or
a predicate, we face two substantial difficulties. On the one hand, we are trying to
introduce as strong extension as possible, while on the other, we try not to worsen
the running time too much. Of course, these two are in a clash. One evident

2This problem is called Generalized Fair L Vertex-Deletion in [122] and in the
respective conference version [121]. However, we believe that evaluation is a more suitable
expression and coincides with standard terminology in logic.

49

possibility is to sacrifice the running time and obtain an XP algorithm, that is an
algorithm running in time f(k)|G|g(k). As an example there is an XP algorithm for
the Fair MSO2 Vertex Evaluation problems parameterized by the treewidth
(and the formula) by Kolman et al. [103] running in time f(|φ|, tw(G))|G|g(tw(G)).
An orthogonal extension is due to Szeider [136] for the so-called local cardinality
constraints (MSO-LCC) who gave an XP algorithm parameterized by treewidth. If
we decide to keep the FPT running time, such result is not possible for treedepth
(consequently for treewidth) as we give W[1]-hardness result for a very basic Fair
L∅ Vertex Deletion problem3 in this paper. A weaker form of this hardness
was already known for FO logic [122]. However, Ganian and Obdržálek [74] study
CardMSO and provide an FPT algorithm parameterized by neighborhood diversity.
Recently, Masařík and Toufar [122] examined fair objective and provide an FPT
algorithm for the Fair MSO1 Vertex Evaluation problem parameterized by
neighborhood diversity. See also [100] for a comprehensive discussion of various
extensions of the MSO.

Since classical Courcelle’s theorem [33] have an exponential tower dependence
on the quantifier depth of the MSO formula, it could be interesting to find a more
efficient algorithm. However, Frick and Grohe [65] proved that this dependence is
unavoidable, unless P = NP. On the other hand, there are classes where MSO
model checking can be done in asymptotically faster time, e.g., the neighborhood
diversity admits a single-exponential dependence on the quantifier depth of the
formula [111]. For a recent survey of algorithmic metatheorems consult the article
by Grohe and Kreutzer [80].

We want to turn particular attention to the Fair Vertex Cover (Fair VC)
problem which, besides its natural connection with Vertex Cover, has some
further interesting properties. For example, we can think about classical vertex
cover as having several crossroads (vertices) and roads (edges) that we need to
monitor. However, people could get uneasy if they will see too many policemen
from one single crossroad. In contrast, if the vertex cover has low fair cost, it
covers all roads while keeping a low number of policemen in the neighborhood of
every single crossroad.

5.1.1 Our Results
We give a metatheorem for graphs having bounded twin cover. Twin cover
(introduced by Ganian [69]; see also [70]) is one possible generalization of the vertex
cover number. Here, we measure the number of vertices needed to cover all edges
that are not twin-edges; an edge {u, v} is a twin-edge if N(u) \ {v} = N(v) \ {u}.
Ganian introduced twin cover in the hope that it should be possible to extend
algorithms designed for parameterization by the vertex cover number to a broader
class of graphs.

Theorem 5.1. The Fair MSO1 Vertex Evaluation problem parameterized
by the twin cover number and the quantifier depth of the formula admits an FPT
algorithm.

We want to point out here that in order to obtain this result we have to reprove
the original result of Ganian [69] for MSO1 model checking on graphs of bounded

3Here, L∅ stands for any logic that can express an edgeless graph.

50

twin cover. For this, we extend arguments given by Lampis [111] in the design of
an FPT algorithm for MSO1 model checking on graphs of bounded neighborhood
diversity. We do this to obtain better insight into the structure of the graph (a
kernel) on which model checking is performed (its size is bounded by a function
of the parameter). This, in turn, allows us to find a solution minimizing the fair
cost and satisfying the MSO1 formula. The result by Ganian in version [69] is
based on the fact that graphs of bounded twin cover have bounded shrubdepth
and so MSO1 model checking algorithm on shrubdepth ([73, 66]) can be used.

When proving hardness results it is convenient to show the hardness result
for a concrete problem that is expressible by an MSO1 formula, yet as simple as
possible. Therefore, we introduce a key problem for Fair Vertex Deletion—the
Fair VC problem.

Fair Vertex Cover (Fair VC)
Instance: An undirected graph G = (V,E), and a positive integer k.
Question: Is there a set W ⊆ V of fair cost at most k such that G\W

is an independent set?

Fair VC problem can be expressed in any logic that can express an edgeless graph
(we denote such logic L∅) which is way weaker even than FO. Therefore, we
propose a systematic study of Fair VC problem which, up to our knowledge,
have not been considered before.

Theorem 5.2. The Fair VC problem parameterized by treedepth td(G) and
feedback vertex set fvs(G) combined is W[1]-hard. Moreover, if there exists an al-
gorithm running in time f(w)no(

√
w), where w : = td(G) + fvs(G), then Exponential

Time Hypothesis fails.

Note that this immediately yields W[1]-hardness and f(w)no(
√

w) lower bound
for Fair L∅ Vertex Evaluation. Previously, an f(w)no(w1/3) lower bound was
given for FO logic by Masařík and Toufar [122]. Thus our result is stronger in
both directions, i.e., the lower bound is stronger, and the logic is less powerful.
On the other hand, we show that Fair VC can be solved efficiently in dense
graph models.

Theorem 5.3. The Fair VC problem parameterized by modular width mw(G)
admits an FPT algorithm with running time 2mw(G) mw(G)n3, where n is the
number of vertices in G.

We point out that the Fair VC problem is (rather trivially) AND-composition-
al and thus it does not admit a polynomial kernel for parameterization by modular
width.

Lemma 5.4. The Fair VC problem parameterized by the modular width of the
input graph does not admit a polynomial kernel, unless NP ⊆ coNP/ poly.

Moreover, an analog to Theorem 5.3 cannot hold for parameterization by
shrubdepth of the input graph. This is a consequence of Theorem 5.2 and [73,
Proposition 3.4].

Another limitation in a rush for extensions of Theorem 5.1 is given when
aiming for more free variables.

51

ℓ-Fair L Vertex Evaluation
Instance: An undirected graph G = (V,E) and a positive integer k,

an L formula φ(X1, . . . , Xℓ) with ℓ free variables.
Question: Are there sets W1, . . . ,Wℓ ⊆ V such that G |=

φ(W1, . . . ,Wℓ) having fair cost at most k?

The fair cost of W1, . . . ,Wℓ is defined as maxv∈V maxi∈[ℓ] |N(v) ∩Wi|.
It is very surprising that such a generalization is not possible for parameteri-

zation by twin cover since the same extension is possible for parameterization by
neighborhood diversity [100]. In fact, they prove something even stronger, i.e., an
FPT algorithm parameterized by neighborhood diversity in the context of MSOL

lin
is given in [100]. In MSOL

lin one can specify both lower- and upper-bound for each
vertex and each free variable (i.e., a feasibility interval is given for every vertex).

Theorem 5.5. The ℓ-Fair FO Vertex Evaluation problem is W[1]-hard for
parameter ℓ even on graphs with twin cover of size one. Moreover, if there exists
an algorithm running in time f(ℓ)nO(ℓ/ log ℓ), then Exponential Time Hypothesis
fails.

Furthermore, we obtain a hardness result for the Fair FO Edge Deletion
problem parameterized by the cluster vertex deletion number. Observe that for
any graph its cluster vertex deletion number is upper bounded by the size of its
twin cover.

Theorem 5.6. The Fair FO Edge Deletion problem is W[1]-hard when pa-
rameterized by the cluster vertex deletion number of the input graph.

For an overview of the results, please refer to Table 5.14 and to Figure 5.1 for
the hierarchy of classes.

5.1.2 Preliminaries
We denote the set {1, . . . , n} by [n]. We deal with simple undirected graphs,
for further standard notation we refer to monographs: graph theory [124] and
parameterized complexity [41]. For a vertex v by N(v) we denote the neighborhood
of v and by N [v] we denote the closed neighborhood of vertex v, i.e., N(v) ∪ {v}.

A parameter closely related to twin cover is cluster vertex deletion (cvd(G)),
that is, the smallest number of vertices one has to delete from a graph in order
to get a collection of (disjoint) cliques. Treedepth of a graph G (td(G)) is the
minimum height of a rooted forest whose transitive closure contains the graph
G [126]. Feedback vertex set (fvs(G)) is the minimum number of vertices of a
graph G whose removal leaves a graph without cycles. Neighborhood diversity
(nd(G)) is the smallest integer r such that the graph can be partitioned into r
sets where each set is either complete graph or independent set and each pair of
sets forms either a complete bipartite graph or there is no edge between them.
Modular width of a graph G (mw(G)), is the smallest positive integer r such that
G can be obtained from an algebraic expression of width at most r, defined as

4A similar table (Table 4.1) was presented in Chapter 4. Compared to it Table 5.1 is tailored
to highlight the results specific for this paper.

52

Left part of the table vc fvs + td tc
Fair Vertex Cover ∗ T5.2 ✓
FV L Deleletion MSO2 ∗ L∅ ✓ MSO1 ✓
FV L Evaluation MSO2 [122] L∅ ✓ MSO1 T5.1
ℓ-FV L Evaluation MSO1 ∗ L∅ ✓ MSO1 T5.5
FE L Deleletion MSO2 [122] FO [122] ?
Right part of the table nd cvd mw
Fair Vertex Cover ∗ ? T5.3
FV L Deletion MSO1 ∗ ? ?
FV L Evaluation MSO1 ∗ ? ?
ℓ-FV L Evalution MSO1 [100] MSO1 ✓ MSO1 ✓
FE L Deleletion ? FO T5.6 ?

Table 5.1: The table summarizes some related (with a citation) and all the
presented (with a reference) results on the studied parameters. Green cells denote
FPT results, and red cells represent hardness results. Logic L in metatheorems
is specified by a logic used in the respective theorem. Symbol ∗ denotes implied
results from previous research and symbol ✓denotes new implied results. A
question mark (?) indicates that the complexity is unknown. The Fair Edge L
Deletion problem is delimited from Vertex problems since there are no apparent
relations between them.

follows. The width of an expression A is the maximum number of operands used
by any occurrence of the substitution operation in A, where A is an algebraic
expression that uses the following operations:

1. Create an isolated vertex.

2. The substitution operation with respect to a template graph T with vertex set
[r] and graphs G1, . . . , Gr created by algebraic expression. The substitution
operation, denoted by T (G1, . . . , Gr), results in the graph on vertex set
V = V1 ∪ · · · ∪ Vr and edge set E = E1 ∪ · · · ∪ Er ∪ ⋃{i,j}∈E(T)

{
{u, v} : u ∈

Vi, v ∈ Vj

}
, where Gi = (Vi, Ei) for all i ∈ [r].

An algebraic expression of width mw(G) can be computed in linear time [137].
We stick with standard definitions and notation in logic. For a comprehensive

summary, please consult a book by Libkin [116].

5.2 Metatheorems for Fair Evaluation
First we show an FPT algorithm for the fair MSO1 vertex evaluation problem
parameterized by the twin cover number as it is stated in Theorem 5.1.

We give a more detailed statement that implies the promised result straigth-
forwardly. We split the proof into two parts. First, we show an algorithm for
MSO1 model checking parameterized by twin cover of the graph (Proposition 5.9).
In the second part, we prove that we can even compute the optimal fair cost
(Proposition 5.13) and so derive the promised result.

53

cw

tw mw

cvd

sd

nd
tc

fvs
td

vc

Figure 5.1: Hierarchy of graph parameters with depicted complexity of the Fair
L Vertex Evaluation problem. An arrow indicates that a graph parameter
upper-bounds the other. Thus, hardness results are implied in the direction of
arrows, and FPT algorithms are implied in the reverse direction. Green colors
indicate FPT results for MSO2, orange are FPT for MSO1, blue are open, and
red are hardness results. We denote treewidth by tw, shrubdepth by sd, and
clique-width by cw. We refer to book [41] for definitions. Other parameters and
their respective abbreviations are defined in Subsection 5.1.2.

Overview of the Algorithm. For the model checking algorithm, we closely
follow the approach of Lampis [111]. The idea is that if there is a large set of
vertices with the same closed neighborhood, then some of them are irrelevant,
i.e., we can delete them without affecting the truthfulness of the given formula φ.
For graphs of bounded neighborhood diversity using this rule alone can reduce
the number of vertices below a bound that depends on nd(G) and |φ| only, thus
providing an FPT model checking algorithm. For the graphs of bounded twin
cover, this approach can be used to reduce the size of all (twin) cliques, yet their
number can still be large. We take the approach one step further and describe
the deletion of irrelevant cliques in a similar manner; these rules together yield a
model checking algorithm for graphs of bounded twin cover.

The reduction rules also lead to a notion of shape of a set W ⊆ V . The
motivation behind shapes is to partition all subsets of V such that if two sets
W,W ′ have the same shape, then G |= φ(W) if and only if G |= φ(W ′). This
allows us to consider only one set of each shape for the purposes of model checking.
Since the number of all distinct shapes is bounded by some function of parameters,
we can essentially brute force through all possible shapes.

A final ingredient is an algorithm that for a given shape outputs a subset
of vertices with this shape that minimizes the fair cost. This algorithm uses
ILP techniques, in particular minimizing quasiconvex function subject to linear
constraints.

Notation. In what follows G = (V,E) is a graph and K is its twin cover of
size k. An MSO1 formula φ contains qS set quantifiers and qv element (vertex)
quantifiers. Given a twin cover K and A ⊆ K, we say that A is the cover set of
a set S ⊆ V \K if every v ∈ S has N(v) ∩K = A. Note that, by the definition
of twin cover, for all u, v ∈ V \K with {u, v} ∈ E we have that A is a cover set
for u if and only if A is a cover set for v. We say that two cliques have the same

54

type if they have the same size and the same cover set. Clearly, if the cover set is
fixed, two cliques agree on type if and only if their sizes are the same. We define
a labeled graph, that is, a graph and a collection of labels on the vertices. We say
that two cliques have the same labeled type if all of them have the same size, the
same cover set and the same labels on vertices.

5.2.1 Model Checking
We give a reformulated combination of Lemma 5 and Theorem 4 by Lampis [111].

Proposition 5.7 ([111, Lemma 5 and Theorem 4]). Let φ be an MSO1 formula
and let G be a labeled graph. If there is a set S of more than 2qSqv vertices having
the same closed neighborhood and the same labels, then for any v ∈ S we have
G |= φ if and only if G \ v |= φ.

In particular, if G is a graph with just one label, then for any clique C where
each vertex has exactly the same closed neighborhood in G the following holds.
Either there is a vertex v ∈ C such that G |= φ if and only if G \ v |= φ or the
size of C is bounded by

2qS+1qv.

Proposition 5.7 bounds the size of a maximum clique in G \K because we can
apply it repeatedly for each clique that is bigger than the threshold 2qS+1qv. Now,
we need to bound the number of cliques of each type. For this, we establish the
following technical lemma.

Lemma 5.8. Let G be a labeled graph with twin cover K. Let φ be an MSO1
formula with qv element quantifiers and qS set quantifiers. Suppose the size of a
maximum clique in G \K is bounded by r. If there are strictly more than

α(qS, qv) = 2rqS (qv + 1)

cliques of the same labeled type T , then there exists a clique C of the labeled type
T such that G |= φ if and only if G \ C |= φ.

Proof. We prove the lemma by induction on qS + qv. Without loss of generality,
all the quantifiers are assumed to be existential.

The base case of the induction is a quantifier-free formula. If there is at least
one labeled type with at least two cliques C1, C2 then the following holds. If
G |= φ then G \ C1 |= φ clearly holds as well since clique C2 has the same cover
set and the same labels and a quantifier-free formula can only examine the labeled
vertices. If (G \ C1) |= φ and since C1, C2 have the same labels the same size and
the same cover set so G |= φ.

For the induction case, we consider the first quantified variable in φ and we
split the proof whether it is set or vertex variable. Suppose there is at least one
labeled type which contains strictly more than α(qS, qv) cliques.

If it is a set variable then we try all possible assignments of the variable to
cliques of the chosen labeled type. There are at most 2r of possible assignments to
single clique and so from cliques of one labeled type emerge at most 2r different

55

labeled (sub)types of cliques. We can compute that at least one of them has
strictly more than α(qS − 1, qv):

⎡⎢⎢⎢α(qS, qv) + 1
2r

⎤⎥⎥⎥ ≥

⎡⎢⎢⎢2r(qS−1)(qv + 1) + 1
2r

⎤⎥⎥⎥ ≥ α(qS − 1, qv) + 1.

So, by the induction assumption we know that there is a clique C in the newly
created labeled (sub)type of the promised properties and so of the larger labeled
type.

If it is a vertex variable then only one more different labeled type can be
created and importantly at most one single clique may contain the new label. We
can compute:

α(qs, qv) + 1 − 1 ≥ 2rqSqv + 2rqS ≥ α(qs, qv − 1) + 1.

The argument follows from the induction assumption by the same reasoning as in
the previous case.

From this, we can derive a model checking algorithm.

Proposition 5.9 (Model checking on graphs of bounded twin cover). Let G be a
graph with twin cover K of size k and the size of the maximum clique in G \K
bounded by 2qSqv and φ is an MSO1 sentence then either there exists a clique
C ∈ G \K such that G |= φ if and only if G \ C |= φ or the size of G is bounded
by

k + (qv + 1)q2
v2k+2qS+2qS qSqv = 2O(k+2qS qSqv).

Proof. There are k vertices in the cover and 2kr types of cliques and each of them
(by Lemma 5.8) is repeated at most α(qS, qv) = 2rqS (qv + 1) otherwise one clique
of that type cannot be distinguished by formula φ. The maximal size of the clique
is r = 2qSqv from Proposition 5.7 and this gives us the desired bound.

k + 2kr2α(qS, qv) = k + 2kr22rqS (qv + 1) = k + 2k(2qSqv)222qS qvqS (qv + 1) =

= k + (qv + 1)q2
v2k+2qS+2qS qvqS .

5.2.2 Finding a Fair Solution

In the upcoming proof, we follow the ideas of Masařík and Toufar [122]. They
define, for a given formula φ(X), a so-called shape of a set W ⊆ V in G. The
idea behind a shape is that in order to do the model checking we have deleted
some vertices from G that cannot change the outcome of φ(X), however, we
have to derive a solution of minimal cost in the whole graph G. Thus the shape
characterizes a set under which φ(X) holds and we have to be able to find a
set W ⊆ V (G) for which φ(W) holds and W minimizes the fair cost among sets
having this shape.

56

Shape. Let G = (V,E) be a graph, φ(X) an MSO formula, K ⊆ V a twin cover
of G, A ⊆ K, and let r = 2qS+2qv and α = 2r(qS+1)(qv + 1). Let C be the collection
of all cliques in G such that A is their cover set. We define an A-shape. An A-shape
of size r is a two dimensional table SA of dimension (r + 2) × (r + 2) indexed
by {0, 1, . . . , r + 1} × {0, 1, . . . , r + 1}. Each entry SA(i, j) ∈ {0, . . . , α + 1}. The
interpretation of SA(i, j) is the minimum of α+ 1 and of the number of cliques C
with N(C) = A such that

min(α + 1, |C ∩W |) = i and min(α + 1, |C \W |) = j.

Finally, the shape of X in G is a collection of A-shapes for all A ⊆ K.
A solution for C with cover set A can be formally described by a function

sol : C → N × N. The solution sol is valid if for every C ∈ C with sol(C) = (i, j)
either i+ j = |C| or |C| ≥ r, i = r+ 1 (or equivalently j = r+ 1), and i+ j < |C|.
For an illustration of a valid assignment please refer to Figure 5.2. We say that a
valid solution sol is compatible with the shape SA if S(i, j) =

⏐⏐⏐sol−1(i, j)
⏐⏐⏐, whenever

S(i, j) ≤ α and
⏐⏐⏐sol−1(i, j)

⏐⏐⏐ ≥ α + 1 if S(i, j) = α + 1. The A-shape SA is said to
be valid if there exists a valid solution for SA. Note that such a solution does
not exist if the shape specifies too many (or too few) cliques of certain sizes. The
shape S is valid if all its A-shapes are valid.

The following lemma is a key observation about shapes.

Lemma 5.10. Let φ be an MSO1 formula with one free variable, G a graph and
W,W ′ two subsets of vertices having the same shape. Then G |= φ(W) if and
only if G |= φ(W ′).

Proof. The proof follows using Proposition 5.7 and Lemma 5.8. Indeed, if we take
the graph G with one label corresponding to set W and apply the reduction rules
given by Proposition 5.7 and Lemma 5.8 and repeat the same process with W ′,
we obtain two isomorphic labeled graphs.

Lemma 5.10 allows us to say that a formula with one free variable holds under
a shape since it is irrelevant which subset of vertices of this particular shape is
assigned to the free variable. Also note that deciding whether the formula holds
under the shape can be done in FPT time by simply picking arbitrary assignment
of the given shape and running a model checking algorithm. Lemma 5.12 computes
a solution of minimal cost for an A-shape. We do this by reducing the task to
integer linear programming (ILP) while using non-linear objective. A fuction
f : Rp → R is separable convex if there exist convex functions fi : R → R for
i ∈ [p] such that f(x1, . . . , xp) = ∑p

i=1 fi(xi).

Theorem 5.11 ([127] – simplified). Integer linear programming with objective
minimization of a separable convex function in dimension p is FPT with respect
to p and space exponential in L the length of encoding of the ILP instance.

Lemma 5.12. Let G = (V,E) be a graph, K be a twin cover of G, and ∅ ≠ A ⊆ K.
There is an algorithm that given an A-shape SA of size r computes a valid solution
for SA of minimal cost in time f(|K|, r) · |G|O(1) or reports that SA is not valid.

Proof. Let C be the collection of all cliques such that A is their cover set. We split
the task of finding a minimal solution to SA into two independent parts depending
on the size of cliques assigned in the phase.

57

0

0

1 2 3 4 5 ≥ 6

1

2

3

4

5

≥ 6nu
m

be
r

of
ve

rt
ic

es
in

W
number of vertices outside W

Figure 5.2: Example of a 7 × 7
A-shape. All cliques of size 3 will
be assigned to yellow (light gray)
fields, while cliques of size 8 will
be assigned to orange (darker gray)
fields.

0

0

0 0

1

0

2

0

3

0

4

0

5

0

≥ 6

11

22

33

44

55

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

?≥ 6 ? ? ? ? ? 6nu
m

be
r

of
ve

rt
ic

es
in

W

number of vertices outside W

Figure 5.3: An example of uncer-
tainty in computation of objective
function. The value in the last row
depends on the size of the clique
we are assigning to those cells. The
value in the cell is how much we pay
for any compatible clique assigned
to this cell.

The first phase is for cliques in C with sizes at most r. Observe that these can
be assigned deterministically in a greedy way. This is because no cell of SA is
shared by two sizes and we can see that if there are more cells with value α on the
corresponding diagonal we can always prefer the top one as this minimizes the
cost (see Figure 5.3). However, this is not possible for larger cliques as they may
in general share some cells of SA and thus we defer them to the second phase.

Now observe that the most important vertices for computing the cost are the
vertices constituting the set A. To see this just note that all other vertices see only
A and their neighborhood (a clique) which is at least as large as for the vertices
in A. It follows that we should only care about the number of selected vertices
such that A is their cover set. Thus if the size of all cliques in C is bounded in
terms of k we are done. Alas, this is not the case.

We split the set C into sets C1, . . . , C2r, and Cmax. A clique C ∈ C belongs to
C|C| if 1 ≤ |C| ≤ 2r and belongs to Cmax otherwise. Note that cliques from Cmax
may be assigned only to cells having at least one index r + 1. As mentioned we
are about to design an ILP with a non-linear objective function. This ILP has
variables xq

i,j that express the number of cliques from the set Cq assigned to the
cell (i, j) of SA (that is 1 ≤ i, j ≤ r + 1 and q ∈ Q = {1, . . . , 2r} ∪ {max}). The
obvious conditions are the following (the ⊵ symbol translates to = if S(i, j) ≤ α
while it translates to ≥ if S(i, j) = α + 1).

∑
q∈Q

xq
i,j ⊵ SA(i, j) 0 ≤ i, j ≤ r + 1

∑
0≤i,j≤r+1

xq
i,j = |Cq| ∀q ∈ Q

xq
i,j ≥ 0 0 ≤ i, j ≤ r + 1, ∀q ∈ Q

58

We are about to minimize the following objective∑
0≤i≤r+1;0≤j≤r

∑
1≤q≤2r

(q − j)xq
i,j +

∑
0≤i≤r+1

∑
∀q

i · xq
i,r+1 + g

(
xmax

r+1,0, . . . , x
max
r+1,r

)
,

where g : Nr → N is a function that has access to sizes of all cliques in Cmax and
computes the minimum possible assignment. We claim that the function g is a
separable convex function in variables xmax

r+1,0, . . . , x
max
r+1,r. The first summand of the

objective function describes the cliques of size at most 2r. Their price corresponds
to the number of vertices in the clique q minus the number of vertices that are not
selected j. The second summand corresponds to the last row, where the cheapest
price is always the number of selected vertices i. The last summand, discussed
in the following paragraph, describes the assignment to the last row. The result
then follows from Theorem 5.11 as the number of integral variables is O(r3).

Observe that the value of g
(
xmax

r+1,0, . . . , x
max
r+1,r

)
is equal to sum of sizes of cliques

“assigned to the last row” minus ∑r
j=0 j · xmax

r+1,j. Now, g
(
xmax

r+1,0, . . . , x
max
r+1,r

)
=

g′
(∑r

j=0 x
max
r+1,j

)
−∑r

j=0 j · xmax
r+1,j. Since all cliques in Cmax are eligible candidates

to be assigned to the last row and since it is always cheaper to assign there those
of the smallest size among them we can define g′ based only on the number of
cliques that are assigned to the last row. This finishes the proof since g′ is a
convex function. See Section 5.2.2 for details on polynomial space version.

Now we are ready to prove the main result of this section. It essentially follows
by the exhaustive search among all possible shapes S such that φ is true under S
and application of Lemma 5.12.

Proposition 5.13. Let G = (V,E) be a graph with twin cover K of size k. For
an MSO1 formula φ(X) with one free variable that represents the set to be deleted
it is possible to find a set W ⊆ V such that

• φ(W) holds in G and

• the cost of W is minimized among all subset of V satisfying φ(X)

in time f(k, |φ|)|V |O(1) for some computable function f .

Proof. We proceed as follows. For every possible selection of K ∩W we generate
all possible shapes and check whether φ(X) evaluates to true under shape S and
if so, we compute W for S having the minimal fair-cost. Finally, we return the
set X minimizing the cost.

We stress that Lemma 5.8 applies only in cases where the cover set of the
cliques at hand is not empty. Thus, these cliques are exceptional and we have
to handle them separately. Note that in this case, the objective is different—we
want to minimize the maximum number of selected vertices in any clique. It is
not hard, however, to do this via standard tricks.

In order to summarize the running time we have

• at most 2k possible selections for W ∩K and

• at most 2k · (α + 1)(r+1) possible shapes (for each such selection).

59

For every shape S we label the graph according to S. Afterwards, apply Lemma 5.8
and proposition 5.7 exhaustively on the labeled graph to resolve whether φ(X)
evaluates to true under S. If φ(X) was evaluated to true, then using Lemma 5.12
on every possible A we obtain a set WA minimizing the cost for vertices in A
and put W = ∪A⊆KWA. Observe that this union gives the optimal cost for the
selected shape S. Finally, we return the set W minimizing the cost for any true
evaluated shape. Clearly, this routine runs in FPT time with respect to k and |φ|
as parameters.

Polynomial Space Version of Proposition 5.13

We now argue that it is possible to implement Lemma 5.12 in polynomial space
via reducing it to integer linear programming. We note that similar application of
this technique is recently presented by Bredereck et al. [16].

Theorem 5.14 (Lenstra & Frank, Tardós [114, 63]). There is an algorithm that
given an ILP with p variables finds an optimal solution to it using O(p2.5p poly(L))
arithmetic operations and space polynomial in L, where L is the bitsize of the ILP.

Remark 5.15. Let G = (V,E) be a graph, K be a twin cover of G, and A ⊆ K.
There is an algorithm that given an A-shape SA of size r computes a valid solution
for SA of minimal cost in time f(|K|, r) · |G|O(1) and space polynomial in |G| or
reports that SA is not valid.

Proof. Here the only difference is that we have to rewrite the function

g(xmax
r+1,1, . . . , x

max
r+1,r)

using a new variable y (representing its value) into constraints of ILP and thus
obtain a linear objective.

We do this by adding a variable y ≥ 0 with constraint y = ∑r
j=1 x

max
r+1,j and

work with univariate function g(y) instead. We order cliques in Cmax according to
their size, that is, |C1| ≤ |C2| ≤ · · · ≤ |Ct|, where t denotes the size of Cmax. By
ci we denote the sum ∑i

j=1 |Ci| and note that g(y) = cy. Finally we introduce a
variable gy representing the value of g(y) and add constraints

gy ≥ (y − i)ci ∀1 ≤ i ≤ t .

Our result then follows as t ≤ |V | and thus we add at most |V | new constraints.

5.3 The Fair VC Problem

5.3.1 Hardness for Treedepth and Feedback Vertex Set
We begin with several simple observations about the fair objective value k in the
Fair VC problem.

Observation 5.16. Let G = (V,E) be a graph and U ⊆ V be a vertex cover of G
with fair objective k, that is, ∀v ∈ V it holds that |N(v) ∩ U | ≤ k. If v ∈ V has
deg(v) ≥ k, then v ∈ U .

60

1

2

i

n

...

Va

guard

n− 1

i

lower

...

n− i

upper

c1ab

c2ab

n

...

n− i

a-upper

i

a-lower

1

2

3

4

q

m

...

E{a,b}

guard

m− 1

n− j

j

Figure 5.4: An overview of the reduction in the proof of Theorem 5.2. The gray
vertices are enforced to be a part the fair vertex cover. If a vertex fair objective
was lowered, then the resulting threshold is beneath the vertex (the group of
vertices).

Note that we can use Observation 5.16 to enforce a vertex v to be a part of the
fair vertex cover by attaching k + 1 degree 1 vertices to v. Observe further that
we may adjust (lower) the global budget k for individual vertex v by attaching
vertices to v and then attaching k new leaves to the newly added vertices. To this
end if the above operations are applied to a graph G resulting in a graph G′, then
td(G′) ≤ td(G) + 2 and fvs(G′) = fvs(G).

We observe substantial connection between Fair VC and Target Set
Selection (TSS). It is worth mentioning that Vertex Cover can be formulated
in the language of TSS by setting the threshold to deg(v) for every vertex v. As a
result, our reduction given here is, in certain sense, dual to the one given by Chopin
et al. [24] for the TSS problem. However, we will show that the structure of the
solution for Fair VC is, in fact, the complement of the structure of the solution
for TSS given therein. The archetypal W[1]-hard problem is the ℓ-Multicolored
Clique problem [41]:

ℓ-Multicolored Clique Parameter: ℓ
Instance: An ℓ-partite graph G = (V1 ∪ · · · ∪ Vℓ, E), where Vc is an

independent set for every c ∈ [ℓ] and they are pairwise
disjoint.

Question: Is there a clique of the size ℓ in G?

Proof of Theorem 5.2. Let G = (V1∪· · ·∪Vℓ, E) be an instance of the ℓ-Multico-
lored Clique problem and let n = |Vi| for all i ∈ [ℓ]. We denote by E{a,b}
the set of edges between Va and Vb and by m = |E{a,b}|. We will describe graph

61

H = (W,F) that together with k = max(m − 1, 2n) will form an equivalent
instance of the Fair VC problem. The reduction has the following properties:

• |W | = poly(n, k) and |F | = poly(m, k),

• td(H) = O(ℓ2), and fvs(H) = O(ℓ2).
For an overview of the reduction please refer to Figure 5.4. There are three types
of gadgets in our reduction, namely the vertex selection gadget (one for each
vertex), the edge selection gadget (one for each edge), and the incidence check
gadget (one for each vertex–edge incidence). We start by enumerating the vertices
in each color class by numbers from [n] and edges by numbers in [m]. Throughout
the proof a, b are distinct numbers from [ℓ].

The Va selection gadget consists of n choice vertices (representing the color
class Va), a special vertex called guard, and a group of n2 enumeration vertices.
The guard vertex is connected to all choice vertices, it is enforced to be a part
of the fair vertex cover, and its budget is lowered so that at most n − 1 choice
vertices can be in any fair vertex cover. The i-th choice vertex is connected to
n enumeration vertices. For each choice vertex, there are n such vertices and so
these are private for vertex i. We further divide these vertices into two parts –
the lower part consists of i vertices and the upper part consists of n− i vertices.

The E{a,b} selection gadget consists of m choice vertices, a special vertex called
guard, and a group of 2nm enumeration vertices and is constructed analogously
to the vertex selection gadget. If the q-th edge of E{a,b} connects i-th vertex in Va

and j-th vertex in Vb, there are (private) 2n numeration vertices are connected to
the q-th choice vertex. These are split into four groups – lower a-part consisting of
i vertices, upper a-part consisting of n− i vertices, and similarly lower and upper
b-parts.

The ab-incidence check gadget consist of two vertices c1
ab and c2

ab. Both c1
ab and

c2
ab are enforced to be a part of the solution and with a lowered budget in a way

that at most n vertices in the neighborhood of each of them can be part of any
fair vertex cover. The vertex c1

ab is connected to every lower part vertex in the
selection gadget for Va and to every upper a-part vertex in the selection gadget
for E{a,b}. The vertex c2

ab is connected to every upper part vertex in the selection
gadget for Va and to every lower a-part vertex in the selection gadget for E{a,b}.

This finishes the construction of H. Now observe that if we remove vertices
c1

ab, c
2
ab from H, then each component of the resulting graph is a tree (rooted

in its guard vertex) of depth at most 3. It follows that td(H) = O(ℓ2) and
fvs(G) = O(ℓ2), as so is the size of the removed set of vertices. We finish the proof
by showing that the two instances are equivalent.

Suppose (G, ℓ) is a yes-instance which is witnessed by a set K ⊆ V1 × · · · × Vℓ.
We now construct a vertex cover CK of H having |N(w) ∩CK | ≤ k for all w ∈ W .
The set CK contains the following:

• all enforced vertices (including all guard and check vertices),

• if v ∈ Va ∩K is the i-th vertex of Va, then all selection vertices of Va but the
vertex i are in CK and lower and upper enumeration vertices of i are in CK ,

• if v ∈ Va ∩K and u ∈ Vb ∩K are adjacent through q-th edge of E{a,b}, then
all selection vertices of E{a,b} but the vertex q are in CK and q’s enumeration
vertices are in CK .

62

For the other direction we prove that a vertex cover C in H fulfils |N(w)∩C| ≤
k for all w ∈ W if it corresponds to a clique in G. For the other direction suppose
that there is a vertex cover C in H such that |N(w) ∩ C| ≤ k for all w ∈ W .
Recall that C has to contain all enforced vertices. This implies that at least 1
choice vertex for Va is not in U ; we will show that exactly 1 such choice vertex
is in U . The same holds for the edge choice vertices. To see this suppose for
contradiction that 2 choice vertices for Va (vertex i and j) are not in U . Because
U is a vertex cover of H it follows that their enumeration vertices must belong
to U . But now take vertices c1

ab, c
2
ab. In their neighborhood U have at least 3n

vertices (2n from the Va’s numeration part and n from the a-numeration part of
E{a,b}). This is absurd as these vertices (due to the lowered budget) can have at
most 2n vertices in their neighborhood and thus at least one of them exceeds its
budget. Thus the selection gadgets actually encode some selection of vertices va

and edges ea,b. To finish the proof we have to observe that both c1
ab and c2

ab have
at most (in fact, exactly) n neighbors in U if and only if the vertex va is incident
to the edge ea,b. If this holds for all possible combinations of a, b, then we have
selected a clique in the graph G.

It remains to discuss the ETH based lower-bound. This follows straightfor-
wardly from our reduction and the result of Chen et al. [23] who proved that there
is no f(k)no(ℓ) algorithm for ℓ-Multicolored Clique unless ETH fails. Since
we have td(G) + fvs(G) = O(ℓ2) in our reduction, the lower-bound follows.

5.3.2 FPT Algorithm for Modular Width
Since the algebraic expression A of width mw(G) can be computed in linear
time [137], we can assume that we have A on the input. We construct the rooted
ordered tree T corresponding to A. Each node t ∈ T is assigned a graph Gt ⊆ G,
that is, the graph constructed by the subexpression of A rooted at t. Suppose we
are performing substitution operation at node t with respect to template graph T
and graphs G1, . . . , Gr. Denote the resulting graph Gt and denote by ni the size
of V (Gi).

Proof of Theorem 5.3. The edges in Gt between two vertices of Gi will be referred
to as old edges, the edges between Gi and Gj for i ̸= j (i.e., edges introduced by
the template operation) will be referred to as new edges.

The computation will be carried out recursively from the bottom of the tree T .
We first describe the structure of all vertex covers C in Gt. Observe that if

ij ∈ E(T) then at least one of V (Gi), V (Gj) must be a subset of C; otherwise
there would be a new edge not covered by C. From this we can see that the set
CT : = {i : V (Gi) ⊆ C} is a vertex cover of the template graph T . We call the CT

the type of the vertex cover C. Furthermore, every set C ∩V (Gi) must be a vertex
cover of Gi (otherwise there would be an old edge uncovered by C).

We now describe the fair cost of the cover C in terms of fair costs and sizes of
the sets C ∩ V (Gi). Denote by ci the size |C ∩ V (Gi)| and by fi the fair cost of
C∩V (Gi) in Gi. The fair cost of C in W ⊆ V (G) is defined as maxv∈W |C∩N(v)|.
For i ∈ [r] the fair cost of C in V (Gi) can be written as fi +∑

j:ij∈E(T) cj. Clearly,
fair cost of C is the maximum of the last expression over i ∈ [r].

If we know the type CT of the cover C this can be simplified based on whether
i lies in CT . If i ∈ CT then fi is ∆(Gi) (the maximal degree of Gi). If on the

63

other hand i /∈ CT then all its neighbors j are in CT and in this case cj = nj.
Combining those observations, we have

fair cost of C in Gi =

⎧⎨⎩∆(Gi) +∑
j /∈CT :ij∈E(T) cj +∑

j∈CT :ij∈E(T) nj i ∈ CT ,

fi +∑
j:ij∈E(T) nj i /∈ CT .

For each node t of the tree T we keep an |V (Gt)| table Tabt of integer values
from [n] ∪ ∞. The value at position Tabt[p] is the smallest size of a cover in Gt of
fair cost p or ∞ if such cover do not exists.

The computation of Tab in leaves of T is trivial. We describe how to compute
value Tabt[p] given that we know Tabi in all children of t. It is enough to determine
whether there exists a vertex cover C of Gt of fixed type; we can simply iterate
over all types as there are at most 2r of them.

Fix a type CT . The cover C of type CT and fair cost at most p and Tabt[p] ̸= ∞
exists if and only if for every i /∈ CT there is a vertex cover Ci of Gi of fair cost
pi such that Tabi[pi] ̸= ∞. Moreover, we require that the values pi satisfy the
following inequalities:

p ≥ ∆(Gi) +
∑

j /∈CT :ij∈E(T)
Tabj[pi] +

∑
j∈CT :ij∈E(T)

nj ∀i ∈ CT , (5.1)

p ≥ pi +
∑

j:ij∈E(T)
nj ∀i /∈ CT , (5.2)

Tabt[p] ≥
∑

j /∈CT

Tabj[pi] +
∑

j∈CT

nj. (5.3)

First, for every i /∈ CT we set pi to the highest possible value without violating
the inequality (5.2), that is pi := p − ∑

j:ij∈E(T) nj. Note that this is always a
safe choice; pi does not appear anywhere else in the constraints and choosing the
highest possible value to give us the greatest freedom due to the monotonicity
of the table. Clearly, if any such pi is negative we know that given constraints
cannot be satisfied and there is no vertex cover C of a given type and fair cost.

If for any i Tabi[pi] = ∞, then there is no vertex cover Ci in Gi of fair cost pi.
This means that we cannot find cover C of a given type and fair cost so we set
Tabi[p1] = ∞. We check whether inequalities (5.1) holds. If not, set Tabi[p1] = ∞.
Otherwise we set Tabt[p] be equal to the expression in (5.3) on the right side.
We claim that there is a vertex cover C of a given type and fair cost; we can
set C = ⋃

i∈CT
V (Gi) ∪ ⋃

i/∈CT
Ci, where Ci is any vertex cover of Gi of fair cost

pi and size Tabi[pi] (this is guaranteed to exist because Tabi[pi] was not ∞. It
is straightforward to check that C has required properties. Moreover, from our
choice of values pi it follows that a vertex cover of type CT , fair cost p and size
Tabt[p] exists if and only if the described procedure finds values of pi. By iterating
over all types CT we can fill the value Tab[p] as required.

To complete the description of the algorithm, it is enough to look whether
there is not ∞ value in Tabroot[k], where k was the desired fair cost.

The running time is n for the induction over expression A times 2r different
type of covers in any single node times filling the table of size at most n times
nr for determining the correct values pi and checking other inequalities for every
i ∈ [r]. This altogether yields a 2rrn3 time algorithm.

64

Proof of Lemma 5.4. First we observe that modular width is trivially composi-
tional, that is, for any two graphs G1, G2 it holds that

mw(G1∪̇G2) = max(mw(G1),mw(G2))

, where ∪̇ denotes the disjoint union. Indeed this follows from the fact that disjoin
union is one of the operations not affecting modular width. Now, it remains to
show that Fair VC is AND-compositional, see [41, Chapter 15]; the rest then
follows from the framework of Bodlaender et al. [11]. To this end, observe that if
a graph G is not connected, then U is a vertex cover in G if and only if U ∩ C is
a vertex cover in G[C] for every connected component C of G.

5.4 Hardness of Possible Extensions
We use the Unary ℓ-Bin Packing problem as the starting point of our hardness
reduction. Unary ℓ-Bin Packing is W[1]-hard for parameter ℓ the number of
bins to be used [92]. Here, the item sizes are encoded in unary and the task is to
assign n items to ℓ bins such that the sum of sizes of items assigned to any bin
does not exceed its capacity B. Formally, Unary ℓ-Bin Packing is defined as
follows.

Unary ℓ-Bin Packing Parameter: ℓ
Instance: Positive integers ℓ and B and item sizes s1, . . . , sn encoded

in unary.
Question: Is there a packing of all items into at most ℓ bins of size

B?

Proof of Theorem 5.5. We construct a formula φ(X1, . . . , Xℓ) and an instance
(G, k) of Fair Vertex MSO Evaluation with k = B from an instance of
Unary ℓ-Bin Packing as follows. The graph G is formed by n disjoint cliques
and a universal vertex u. Cliques in G represent the items by their respective
sizes, that is, there is a clique with si vertices for every i ∈ [n]; denote the clique
representing item i by Ci. This finishes the description of the graph; now we turn
our attention to the formula. Free variables X1, . . . , Xℓ are going to represent an
assignment of items to bins. Note that it is possible to recognize the universal
vertex u by the following FO formula, since u is the only vertex of G satisfying it:

univ(v) : =(∀w ∈ V)
(
(w ̸= v) → (wv ∈ E)

)
.

We fix u for the rest of the description of φ(X1, . . . , Xℓ); this can easily be done
by attaching (∃u ∈ V)(univ(u)) to it. Let p(v) be a predicate. For Q ∈ {∃,∀} we
use the following Qv ∈ (V \ {u})(ψ(v)) as a short form of the expression

(Qv ∈ V)
(
(v ̸= u) → ψ(v)

)
.

Note that this can be straightforwardly extended for more quantifiers.
In order to represent the bin choice, we need to ensure two conditions. First,

every item is packed, that is, every non-universal vertex must belong to some
Xj. Second, every item is fully packed inside (at least) one bin, that is, vertices

65

belonging to the same clique agree on Xj membership. To do so we first introduce
the following predicates (representing these conditions):

cover(X1, . . . , Xℓ) : =(∀v ∈ V \ {u})
⎛⎝ ℓ⋁

j=1
v ∈ Xj

⎞⎠
and

same(X1, . . . , Xℓ) : = (∀v, w ∈ V \ {u})
⎛⎝(vw ∈ E) →

ℓ⋀
j=1

(v ∈ Xj ⇔ w ∈ Xj)
⎞⎠ .

The construction of the new instance is finished by letting

φ(X1, . . . , Xℓ) = (∃u ∈ V)(univ(u)) ∧ cover(X1, . . . , Xℓ) ∧ same(X1, . . . , Xℓ).

It remains to argue that the instances are indeed equivalent. Note that the bin
capacity/fair cost is essentially checked only for u since the fair cost of any vertex
cannot exceed its degree. The degree of any other vertex (not u) does not exceed
maxi∈[n] si and this is always upper-bounded by B.

Let (B, ℓ, s1, . . . , sn) be a Yes-instance of ℓ-Unary Bin Packing. This is
witnessed by a mapping σ : [n] → [ℓ] assigning items to bins. Now, we put

Wj = ∪i∈[n] : σ(i)=jCi.

Observe that |N(u) ∩Wj| = ∑
i∈[n],σ(i)=j si ≤ B for every j ∈ [ℓ], since σ repre-

sented a valid assignment. Furthermore, φ(W1, . . . ,Wℓ) holds, since every clique
vertex is covered and vertices of a clique are always in the same Wj.

For the opposite direction assume we have graph G = (V,E) and that there
exist sets W1, . . . ,Wℓ ⊆ V such that φ(W1, . . . ,Wℓ) holds in G. Recall that u is
the universal vertex of G. First, we have that V = {u} ∪ W1 ∪ · · · ∪ Wℓ, since
the predicate cover(W1, . . . ,Wℓ) holds if and only if every vertex in a clique Ci is
in some Wj. Furthermore, since the predicate same(W1, . . . ,Wℓ)holds, we have
that Ci ∩ Wj is either an empty set or Ci for every i ∈ [n] and j ∈ [ℓ]. This
allows us to construct an assignment σ : [n] → [ℓ] by setting σ(i) = j, where
j ∈ [ℓ] is the smallest number such that Wj ∩ Ci = Ci holds. Now, we have that∑

i∈[n],σ(i)=j si ≤ |Wj| ≤ B by the fair objective. This finishes the proof since we
have constructed a valid assignment.

Proof of Theorem 5.6. We construct a sentence φ, a graph G, and k forming an
instance of Fair Edge FO Deletion with k = B from an instance of Unary
ℓ-Bin Packing as follows. Each item is represented by clique on 3B vertices;
denote the clique associated with i-th item by Ci. In addition, there are ℓ vertices
v1, . . . , vℓ (representing bins) and ℓ guard vertices g1, . . . , gℓ. For each j ∈ [ℓ] we
connect vj with exactly si vertices in Ci (call these vertices special) and with gj.
This finishes the description of G.

The sentence φ is constructed using auxiliary predicates which we describe
first. A predicate guard(v) is used to recognize the guard vertices

guard(v) : =(∃u ∈ V)((uv ∈ E) ∧ (∀w ∈ W \ {u, v})(wv /∈ E)).

bin(v) : =(∃u)((uv ∈ E) ∧ guard(u)).

66

item-edge : =(∀v, w ∈ V : v ̸= w)(
(∃u ∈ V)(¬ bin(u) ∧ vu ∈ E ∧ wu ∈ E)

)
→ (vw ∈ E).

Recall that we set the fair cost to B and thus the solution F deletes at most B
edges incident to any vertex. Note that a vertex v must be a guard vertex in order
to fulfill the guard(v), since the degree of every other vertex in G is at least 3B.
Suppose that the predicate item-edge holds in G \ F . We claim that vw ∈ E for
any two vertices v, w ∈ Ci, since |Ci| = 3B it follows that v and w have at least
B − 2 common neighbors in Ci. Thus, the edge vw cannot be deleted, as v and
w have a common (non-bin) neighbor (provided B ≥ 3). We define an auxiliary
sentence

ψ = (∃v1, . . . , vℓ ∈ V)
⎛⎝ ⋀

j∈[ℓ]
bin(vj) ∧

⋀
j ̸=j′∈[ℓ]

vj ̸= vj′

⎞⎠ ∧ item-edge

and, since ψ implicitly assures existence of ℓ (different) guards, conclude the
following claim.

Claim 5.17. Let F be a set of edges in G. We have that G \ F |= ψ if and only
if F contains only edges between bins and special vertices.

The next predicate we introduce is the notable(v), defined as follows

notable(v) : = ¬ guard(v) ∧
(
(∃u ∈ V)(bin(u) ∧ uv ∈ E)

)
.

Claim 5.18.

1. If G \ F |= notable(v), then v is a special vertex.

2. G |= notable(v) if and only if v is a special vertex.

3. If G \ F ̸|= notable(v) for a special vertex v ∈ Ci, then NG\F (v) ⊆ Ci.

Proof of Claim. A vertex v is notable in a graph if notable(v) holds in that graph.
The second part follows immediately from the construction of G, since the only
vertices attached to the bin vertex vj are the special vertices and its guard vertex
gj (which is not notable). On the other hand, the set F may contain edges vvj

for all j ∈ [ℓ]. Clearly, such a former special vertex is not notable. Finally, if
v is special and G \ F ̸|= notable(v), then v lost all of its edges to bin vertices
v1, . . . , vℓ. ♢

The goal is to delete an edge set F that describes a valid assignment of items
into bins. We need to ensure two conditions. First, every special vertex is not a
neighbor of some bin vertex vj . Second, if a special vertex v ∈ Ci is not a neighbor
of a bin vertex vj, then all special special vertices in Ci are not neighbors of vi.
The two conditions correspond to the following two predicates:

cover : =(∀v ∈ V)(∃u ∈ V)
(
bin(u) ∧ uv /∈ E

)

same : =(∀v, w ∈ V)
(

(notable(v) ∧ notable(w) ∧ vw ∈ E) →

67

→ (∀u ∈ V : bin(u))(uw ∈ E ⇔ vw ∈ E)
)

Now, we are ready to give the sentence φ that describes the problem:

φ = ψ ∧ same ∧ cover.

This finishes the description of the reduction. We are left with validating that the
two instances are equivalent.

Suppose we were given a Yes-instance of ℓ-Unary Bin Packing and let
σ : [n] → [ℓ] be the assignment of items to bins witnessing this fact. The set F
contains an edge uvj for a special vertex u ∈ Ci and a bin vertex vj whenever
σ(i) = j. Clearly, we have |{e ∈ F : e ∋ vj}| ≤ ∑

i∈[n],σ(i)=j si ≤ B = k for every
vertex vj with j ∈ [ℓ], while every other vertex has at most one incident edge
in F . Now, we have to verify that G \ F |= φ. We have G \ F |= same ∧ cover,
since σ is an assignment. Finally, G \ F |= ψ, since our F fulfills the condition of
Claim 5.17.

Suppose now that we have a set F of edges of G with fair cost B such that
G \ F |= φ. By Claim 5.17 we have that F contains only edges between special
vertices in G and bin vertices v1, . . . , vℓ. We partition the set of special vertices
into sets N and R; we put a special vertex v in N if G \ F |= notable(v) and we
put it in R otherwise. Note that |R| ≤ B, since a vertex in R contributes to the
fair cost of every bin vertex vj . By Claim 5.18 and the fact that G \F |= same we
have that a bin vertex vj is either completely attached or non-attached to Ci ∩N
for every j ∈ [ℓ] and every i ∈ [n]. Furthermore, there are no edges between a
vertex in R and a bin vertex vj in G\F for every j ∈ [ℓ]. We define the assignment
σ : [n] → [ℓ] by defining σ(i) to be the smallest integer such that there are no
edges between vσ(i) and Ci in G \ F . Since σ is an assignment by G \ F |= cover,
it remains for verify that the capacity condition is fulfilled. For that we have∑

i∈[n],σ(i)=j

si ≤ |{e ∈ F : vj ∈ e}| ≤
∑

i∈[n],σ(i)=j

|N ∩ Ci| + |R| ≤ k = B.

We conclude that σ is a valid assignment and the theorem follows.

5.5 Conclusions
Fair Edge L Deletion problems. The crucial open problem is to resolve
the parameterized complexity of the Fair FO Edge Deletion problems for
parameterization by neighborhood diversity and twin cover. Observe that there
is a big difference between vertex and edge deletion problems—in our hardness
reduction we use a deletion to an edgeless graph but a fair edge cost, in this case,
equals to the maximum degree of the former graph (and thus it is computable in
polynomial time).

Generalization of parameters. Another open problem is to resolve the
parameterized complexity of the Fair MSO1 Vertex Evaluation problems
with respect to graph parameters generalizing neighborhood diversity or twin
cover (e.g., modular width or cluster vertex deletion number respectively).

68

Cluster Vertex Deletion Number. It seems that a more careful analysis of
the model-checking algorithm may yield (again) sufficient insight into the structure
of the fair solution and thus lead to an FPT algorithm for this wider class of
graphs. Though, it remains open whether this is possible and there is an FPT
algorithm for Fair MSO Vertex Evaluation for this parameterization or not.

MSO with Local Linear Constraints. Previously, an FPT algorithm for
evaluation of a fair objective was given for parameter neighborhood diversity [122].
That algorithm was extended [100] to a so-called local linear constraints again
for a formula φ(·) with one free variable that is defined as follows. Every vertex
v ∈ V (G) is accompanied with two positive integers ℓ(v), u(v), the lower and
the upper bound, and the task is to find a set X that not only G |= φ(X) but
for each v ∈ V (G) it holds that ℓ(v) ≤ |N(v) ∩X| ≤ u(v). Note that this is
a generalization as fair objective of value t can be tested in this framework by
setting ℓ(v) = 0 and u(v) = t for every v ∈ V (G). Is this extension possible for
parameterization by the twin cover number?

To support this question we note that in the proof of Lemma 5.12 the minimal
size of the neighborhood of B for a shape in the exact neighborhood of B is
computed. It is not hard to see that through a similar argument we can compute
the maximal size of the neighborhood of B for a shape in the exact neighborhood
of B. Furthermore, lower and upper bounds for vertices in a clique can be assumed
to be nearly the same—each differs by at most 1 [100]. Thus, Lemma 5.12 gives
only that if at least one of the computed bounds for a vertex v in the twin cover
is within ℓ(v) and u(v), then there is a solution with desired properties. However,
if on the other hand, it happens that both ℓ(v), u(v) are in between the computed
values, we do not know whether or not any of the desired values are attainable. To
see that not all values in the thus computed range are attainable one can construct
a formula that for twin cliques up to a certain size check that the number of
selected vertices is even. Then, if the input graph contains only cliques up to this
size no twin cover vertex has an odd number of neighbors in the set X (provided
the cover vertices form an independent set).

Towards new fair problems. As we proposed the examination of Fair VC
already, we would like to turn an attention to exploring fair versions of other
classical and well-studied Vertex Deletion problems. In contrast, certain
Fair Edge Deletion problems have got some attention before, namely Fair
Feedback Edge Set [117] or Fair Edge Odd Cycle Transversal [104].
Besides Fair VC we propose a study of Fair Dominating Set and Fair
Feedback Vertex Set. In particular, it would be really interesting to know
whether fair variants of Vertex Cover and Dominating Set admit a similar
behavior as in the classical setting.

Furthermore, We would like to ask whether there is an NP-hard Fair Vertex
Deletion problem that admits an FPT algorithm for parameterization by treedepth
(and feedback vertex set) of the input graph.

69

70

Bibliography
[1] Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-

parameter tractability and completeness IV: on completeness for W[P] and
PSPACE analogues. Annals of Pure and Applied Logic, 73(3):235–276, 1995.
doi:10.1016/0168-0072(94)00034-Z.

[2] Karl R. Abrahamson, John A. Ellis, Michael R. Fellows, and Manuel E.
Mata. On the complexity of fixed parameter problems (extended abstract).
In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October–1 November 1989, pages
210–215, 1989. doi:10.1109/SFCS.1989.63480.

[3] Tadashi Ae, Akira Nakamura, and Toshimasa Watanabe. On the NP-
hardness of edge-deletion and -contraction problems. Discrete Applied
Mathematics, 6(1):63–78, 1983. doi:10.1016/0166-218X(83)90101-4.

[4] Noga Alon. Restricted colorings of graphs. In K. Walker, editor, Surveys
in Combinatorics, pages 1–34. Cambridge University Press, 1993. doi:
10.1017/cbo9780511662089.002.

[5] Stefan Arnborg, Derek Corneil, and Andrzej Proskurowski. Complexity
of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete
Methods, 8(2):277–284, 1987. doi:10.1137/0608024.

[6] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308–340, June 1991.
doi:10.1016/0196-6774(91)90006-k.

[7] József Balogh, Alexandr Kostochka, and Xujun Liu. Packing chromatic
number of subcubic graphs, 2017. arXiv:1703.09873.

[8] Rémy Belmonte, Michael Lampis, and Valia Mitsou. Parameterized (ap-
proximate) defective coloring. In 35th Symposium on Theoretical Aspects
of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 10:1–10:15, 2018. doi:10.4230/LIPIcs.STACS.2018.10.

[9] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic program-
ming. Journal of Combinatorial Theory, Series A, 14(2):137–148, 1973.
doi:10.1016/0097-3165(73)90016-2.

[10] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
doi:10.1137/S0097539793251219.

[11] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. On problems without polynomial kernels. Journal of Computer
and System Sciences, 75(8):423–434, 2009. doi:10.1016/j.jcss.2009.04.
001.

[12] Béla Bollobás. Modern graph theory, volume 184. Springer Science &
Business Media, 2013. doi:10.1007/978-1-4612-0619-4.

71

http://dx.doi.org/10.1016/0168-0072(94)00034-Z
http://dx.doi.org/10.1109/SFCS.1989.63480
http://dx.doi.org/10.1016/0166-218X(83)90101-4
http://dx.doi.org/10.1017/cbo9780511662089.002
http://dx.doi.org/10.1017/cbo9780511662089.002
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/0196-6774(91)90006-k
http://arxiv.org/abs/1703.09873
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.10
http://dx.doi.org/10.1016/0097-3165(73)90016-2
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1007/978-1-4612-0619-4

[13] Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson,
and Daniël Paulusma. Independent feedback vertex set for P5-free graphs.
Algorithmica, 81(4):1342–1369, 2019. doi:10.1007/s00453-018-0474-x.

[14] John A. Bondy and Uppaluri S. R. Murty. Graph theory with applications,
volume 290. Citeseer, 1976.

[15] Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya
Stein, and Mingxian Zhong. Three-coloring and list three-coloring of graphs
without induced paths on seven vertices. Combinatorica, 38(4):779–801,
2018. doi:10.1007/s00493-017-3553-8.

[16] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron,
and Nimrod Talmon. Mixed integer programming with convex/concave
constraints: Fixed-parameter tractability and applications to multicovering
and voting. CoRR, 2017. arXiv:1709.02850.

[17] Boštjan Brešar, Sandi Klavžar, and Douglas F. Rall. On the packing chro-
matic number of Cartesian products, hexagonal lattice, and trees. Discrete
Applied Mathematics, 155(17):2303–2311, 2007. doi:10.1016/j.dam.2007.
06.008.

[18] Hajo Broersma, Fedor V. Fomin, Petr A. Golovach, and Daniël Paulusma.
Three complexity results on coloring Pk-free graphs. European Journal of
Combinatorics, 34(3):609–619, 2013. doi:10.1016/j.ejc.2011.12.008.

[19] Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song.
Updating the complexity status of coloring graphs without a fixed in-
duced linear forest. Theoretical Computer Science, 414(1):9–19, 2012.
doi:10.1016/j.tcs.2011.10.005.

[20] Hajo Broersma, Ton Kloks, Dieter Kratsch, and Haiko Müller. Independent
sets in asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics,
12(2):276–287, 1999. doi:10.1137/S0895480197326346.

[21] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows.
Advice classes of parameterized tractability. Annals of Pure and Applied
Logic, 84(1):119–138, 1997. doi:10.1016/S0168-0072(95)00020-8.

[22] Tiziana Calamoneri. The L(h, k)-labelling problem: An updated survey
and annotated bibliography. The Computer Journal, 54(8):1344–1371, 2011.
doi:10.1093/comjnl/bxr037.

[23] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes,
Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized
NP-hard problems. Information and Computation, 201(2):216–231, 2005.
doi:10.1016/j.ic.2005.05.001.

[24] Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller.
Constant thresholds can make target set selection tractable. Theory of
Computing Systems, 55(1):61–83, 2014. doi:10.1007/s00224-013-9499-3.

72

http://dx.doi.org/10.1007/s00453-018-0474-x
http://dx.doi.org/10.1007/s00493-017-3553-8
http://arxiv.org/abs/1709.02850
http://dx.doi.org/10.1016/j.dam.2007.06.008
http://dx.doi.org/10.1016/j.dam.2007.06.008
http://dx.doi.org/10.1016/j.ejc.2011.12.008
http://dx.doi.org/10.1016/j.tcs.2011.10.005
http://dx.doi.org/10.1137/S0895480197326346
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1093/comjnl/bxr037
http://dx.doi.org/10.1016/j.ic.2005.05.001
http://dx.doi.org/10.1007/s00224-013-9499-3

[25] Maria Chudnovsky. Coloring graphs with forbidden induced subgraphs. In
Proceedings of the International Congress of Mathematicians 2014, volume 4,
pages 291–302. 2014. URL: https://www.mathunion.org/fileadmin/ICM/
Proceedings/ICM2014.4/ICM2014.4.pdf.

[26] Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, and Mingxian Zhong.
List-three-coloring graphs with no induced P6 + rP 3. CoRR, 2018. arXiv:
1806.11196.

[27] Maria Chudnovsky, Peter Maceli, Juraj Stacho, and Mingxian Zhong. 4-
Coloring P6-free graphs with no induced 5-cycles. Journal of Graph Theory,
84(3):262–285, 2017. doi:10.1002/jgt.22025.

[28] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring
P6-free graphs. I. Extending an excellent precoloring. CoRR, 2018. arXiv:
1802.02282.

[29] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring
P6-free graphs. II. Finding an excellent precoloring. CoRR, 2018. arXiv:
1802.02283.

[30] Maria Chudnovsky and Juraj Stacho. 3-colorable subclasses of P8-free
graphs. SIAM Journal on Discrete Mathematics, 32(2):1111–1138, 2018.
doi:10.1137/16M1104858.

[31] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing, May
3–5, 1971, Shaker Heights, Ohio, USA, pages 151–158, 1971. URL: https:
//doi.org/10.1145/800157.805047, doi:10.1145/800157.805047.

[32] Ricardo Corrêa, Frédéric Havet, and Jean-Sébastien Sereni. About a brooks-
type theorem for improper colouring. The Australasian Journal of Combina-
torics, 43:219–230, 2009. URL: https://hal.inria.fr/inria-00223009/.

[33] Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, March
1990. doi:10.1016/0890-5401(90)90043-h.

[34] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-
order logic. A language-theoretic approach., volume 138. Cambridge: Cam-
bridge University Press, 2012. doi:10.1017/CBO9780511977619.

[35] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-
rewriting hypergraph grammars. Journal of Computer and System Sciences,
46(2):218–270, 1993. doi:10.1016/0022-0000(93)90004-G.

[36] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solv-
able optimization problems on graphs of bounded clique-width. Theory of
Computing Systems, 33(2):125–150, 2000. doi:10.1007/s002249910009.

[37] Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations
on tree-decomposable graphs. Theoretical Computer Science, 109(1&2):49–
82, 1993. doi:10.1016/0304-3975(93)90064-z.

73

https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.4/ICM2014.4.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.4/ICM2014.4.pdf
http://arxiv.org/abs/1806.11196
http://arxiv.org/abs/1806.11196
http://dx.doi.org/10.1002/jgt.22025
http://arxiv.org/abs/1802.02282
http://arxiv.org/abs/1802.02282
http://arxiv.org/abs/1802.02283
http://arxiv.org/abs/1802.02283
http://dx.doi.org/10.1137/16M1104858
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
https://hal.inria.fr/inria-00223009/
http://dx.doi.org/10.1016/0890-5401(90)90043-h
http://dx.doi.org/10.1017/CBO9780511977619
http://dx.doi.org/10.1016/0022-0000(93)90004-G
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1016/0304-3975(93)90064-z

[38] Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël
Paulusma. List coloring in the absence of a linear forest. Algorithmica,
71(1):21–35, 2015. doi:10.1007/s00453-013-9777-0.

[39] Lenore Cowen, Wayne Goddard, and C. Esther Jesurum. Defective coloring
revisited. Journal of Graph Theory, 24(3):205–219, 1997. doi:10.1002/
(SICI)1097-0118(199703)24:3<205::AID-JGT2>3.0.CO;2-T.

[40] Lenore J. Cowen, Robert Cowen, and Douglas R. Woodall. Defective
colorings of graphs in surfaces: Partitions into subgraphs of bounded va-
lency. Journal of Graph Theory, 10(2):187–195, 1986. doi:10.1002/jgt.
3190100207.

[41] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameter-
ized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.

[42] Konrad K. Dabrowski and Daniël Paulusma. On colouring (2P2, H)-free
and (P5, H)-free graphs. Information Processing Letters, 131:26–32, 2018.
doi:10.1016/j.ipl.2018.02.003.

[43] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Chris-
tian Komusiewicz, and Frances A. Rosamond. The First Parameter-
ized Algorithms and Computational Experiments Challenge. In Jiong
Guo and Danny Hermelin, editors, 11th International Symposium on Pa-
rameterized and Exact Computation (IPEC 2016), volume 63 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 30:1–30:9,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. doi:10.4230/LIPIcs.IPEC.2016.30.

[44] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.
The PACE 2017 Parameterized Algorithms and Computational Exper-
iments Challenge: The Second Iteration. In Daniel Lokshtanov and
Naomi Nishimura, editors, 12th International Symposium on Parameter-
ized and Exact Computation (IPEC 2017), volume 89 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 30:1–30:12, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.IPEC.2017.30.

[45] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[46] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and
completeness. In Complexity Theory: Current Research, Dagstuhl Workshop,
February 2–8, 1992, pages 191–225, 1992. URL: http://homepages.msor.
vuw.ac.nz/~downey/publications/manitoba.pdf.

[47] Rodney G. Downey and Michael R. Fellows. Complexity Theory, chapter
Fixed-parameter Tractability and Completeness III: Some Structural Aspects
of the W Hierarchy, pages 191–225. Cambridge University Press, New York,
NY, USA, 1993. URL: http://dl.acm.org/citation.cfm?id=183589.
183729.

74

http://dx.doi.org/10.1007/s00453-013-9777-0
http://dx.doi.org/10.1002/(SICI)1097-0118(199703)24:3<205::AID-JGT2>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-0118(199703)24:3<205::AID-JGT2>3.0.CO;2-T
http://dx.doi.org/10.1002/jgt.3190100207
http://dx.doi.org/10.1002/jgt.3190100207
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/j.ipl.2018.02.003
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://homepages.msor.vuw.ac.nz/~downey/publications/manitoba.pdf
http://homepages.msor.vuw.ac.nz/~downey/publications/manitoba.pdf
http://dl.acm.org/citation.cfm?id=183589.183729
http://dl.acm.org/citation.cfm?id=183589.183729

[48] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness I: basic results. SIAM Journal on Computing, 24(4):873–
921, 1995. doi:10.1137/S0097539792228228.

[49] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness II: on completeness for W[1]. Theoretical Computer
Science, 141(1&2):109–131, 1995. doi:10.1016/0304-3975(94)00097-3.

[50] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Monographs in Computer Science. Springer, 1999. doi:10.1007/
978-1-4612-0515-9.

[51] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/
978-1-4471-5559-1.

[52] Zdeněk Dvořák, Tomáš Masařík, Jan Musílek, and Ondřej Pangrác. Flexibil-
ity of planar graphs of girth at least six. CoRR, 2019. arXiv:1902.04069.

[53] Zdeněk Dvořák, Tomáš Masařík, Jan Musílek, and Ondřej Pangrác. Flexi-
bility of triangle-free planar graphs. CoRR, 2019. arXiv:1902.02971.

[54] Zdeněk Dvořák, Sergey Norin, and Luke Postle. List coloring with requests.
Journal of Graph Theory, 2019. doi:10.1002/jgt.22447.

[55] Keith Edwards. The complexity of colouring problems on dense graphs. The-
oretical Computer Science, 43:337–343, 1986. doi:10.1016/0304-3975(86)
90184-2.

[56] Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely
colourable graphs and the hardness of colouring graphs of large girth.
Combinatorics, Probability and Computing, 7(04):375–386, 1998. doi:
10.1017/s0963548398003678.

[57] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic
NP vs monadic co-NP. Information and Computation, 120(1):78–92, 1995.
doi:10.1006/inco.1995.1100.

[58] Jiří Fiala, Sandi Klavžar, and Bernard Lidický. The packing chromatic
number of infinite product graphs. European Journal of Combinatorics,
30(5):1101–1113, 2009. doi:10.1016/j.ejc.2008.09.014.

[59] Jiří Fiala and Petr A. Golovach. Complexity of the packing coloring problem
for trees. Discrete Applied Mathematics, 158(7):771–778, 2010. doi:10.
1016/j.dam.2008.09.001.

[60] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2006. doi:
10.1007/3-540-29953-X.

[61] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Kernelization: Theory of Parameterized Preprocessing. Cambridge University
Press, 2019. doi:10.1017/9781107415157.

75

http://dx.doi.org/10.1137/S0097539792228228
http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1902.04069
http://arxiv.org/abs/1902.02971
http://dx.doi.org/10.1002/jgt.22447
http://dx.doi.org/10.1016/0304-3975(86)90184-2
http://dx.doi.org/10.1016/0304-3975(86)90184-2
http://dx.doi.org/10.1017/s0963548398003678
http://dx.doi.org/10.1017/s0963548398003678
http://dx.doi.org/10.1006/inco.1995.1100
http://dx.doi.org/10.1016/j.ejc.2008.09.014
http://dx.doi.org/10.1016/j.dam.2008.09.001
http://dx.doi.org/10.1016/j.dam.2008.09.001
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1017/9781107415157

[62] Piotr Formanowicz and Krzysztof Tanaś. A survey of graph coloring—its
types, methods and applications. Foundations of Computing and Decision
Sciences, 37(3):223–238, 2012. doi:10.2478/v10209-011-0012-y.

[63] András Frank and Eva Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–65,
1987. doi:10.1007/BF02579200.

[64] Marietjie Frick. A survey of (m, k)-colorings. In John Gimbel, John W.
Kennedy, and Louis V. Quintas, editors, Quo Vadis, Graph Theory?, vol-
ume 55 of Annals of Discrete Mathematics, pages 45–57. Elsevier, 1993.
doi:10.1016/S0167-5060(08)70374-1.

[65] Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. Annals of Pure and Applied Logic, 130(1):3 – 31,
2004. Papers presented at the 2002 IEEE Symposium on Logic in Computer
Science (LICS). doi:10.1016/j.apal.2004.01.007.

[66] Jakub Gajarský and Petr Hliněný. Kernelizing MSO properties of trees of
fixed height, and some consequences. Logical Methods in Computer Science,
Volume 11, Issue 1, April 2015. doi:10.2168/LMCS-11(1:19)2015.

[67] Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Daniel Lokshtanov, and
M. S. Ramanujan. A new perspective on FO model checking of dense
graph classes. In Martin Grohe, Eric Koskinen, and Natarajan Shankar,
editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages
176–184. ACM, 2016. doi:10.1145/2933575.2935314.

[68] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized
algorithms for modular-width. In Gregory Gutin and Stefan Szeider, editors,
Parameterized and Exact Computation: 8th International Symposium, IPEC
2013, Sophia Antipolis, France, September 4–6, 2013, Revised Selected
Papers, pages 163–176. Springer International Publishing, Cham, 2013.
doi:10.1007/978-3-319-03898-8_15.

[69] Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algo-
rithmics. In Dániel Marx and Peter Rossmanith, editors, Parameterized
and Exact Computation - 6th International Symposium IPEC 2011, Saar-
brücken, Germany, September 6–8, 2011. Revised Selected Papers, volume
7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.
doi:10.1007/978-3-642-28050-4_21.

[70] Robert Ganian. Improving vertex cover as a graph parameter. Discrete
Mathematics & Theoretical Computer Science, 17(2):77–100, 2015. URL:
http://dmtcs.episciences.org/2136.

[71] Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and
Patrice Ossona de Mendez. Shrub-depth: Capturing height of dense graphs.
CoRR, 2017. arXiv:1707.00359.

76

http://dx.doi.org/10.2478/v10209-011-0012-y
http://dx.doi.org/10.1007/BF02579200
http://dx.doi.org/10.1016/S0167-5060(08)70374-1
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.2168/LMCS-11(1:19)2015
http://dx.doi.org/10.1145/2933575.2935314
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/978-3-642-28050-4_21
http://dmtcs.episciences.org/2136
http://arxiv.org/abs/1707.00359

[72] Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, Patrice Os-
sona de Mendez, and Reshma Ramadurai. When trees grow low: Shrubs
and fast MSO1. In Mathematical Foundations of Computer Science
2012—37th International Symposium, MFCS 2012, Bratislava, Slovakia,
August 27–31, 2012. Proceedings, pages 419–430, 2012. doi:10.1007/
978-3-642-32589-2_38.

[73] Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and
Patrice Ossona de Mendez. Shrub-depth: Capturing height of dense
graphs. Logical Methods in Computer Science, 15(1), 2019. URL: https:
//lmcs.episciences.org/5149.

[74] Robert Ganian and Jan Obdržálek. Expanding the expressive power of
monadic second-order logic on restricted graph classes. In Thierry Lecroq and
Laurent Mouchard, editors, Combinatorial Algorithms—24th International
Workshop, IWOCA 2013, Revised Selected Papers, volume 8288 of Lecture
Notes in Computer Science, pages 164–177. Springer, 2013. doi:10.1007/
978-3-642-45278-9_15.

[75] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[76] Wayne Goddard, Sandra M. Hedetniemi, Stephen T. Hedetniemi, John M.
Harris, and Douglas F. Rall. Broadcast chromatic numbers of graphs. Ars
Combinatoria, 86:33–49, 2008.

[77] Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A
survey on the computational complexity of colouring graphs with forbidden
subgraphs. Journal of Graph Theory, 84(4):331–363, 2017. doi:10.1002/
jgt.22028.

[78] Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity
gaps for coloring problems on H-free graphs. Information and Computation,
237:204–214, 2014. doi:10.1016/j.ic.2014.02.004.

[79] Carla Groenland, Karolina Okrasa, Paweł Rzążewski, Alex Scott, Paul
Seymour, and Sophie Spirkl. h-colouring Pt-free graphs in subexponential
time. CoRR, 2018. arXiv:1803.05396.

[80] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems.
Model Theoretic Methods in Finite Combinatorics, pages 181–206, 2011.
doi:10.1090/conm/558/11051.

[81] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-
order properties of nowhere dense graphs. Journal of the ACM, 64(3):17:1–
17:32, 2017. doi:10.1145/3051095.

[82] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial
algorithms for perfect graphs. Annals of Discrete Mathematics, 21:325–356,
1984. doi:10.1016/s0304-0208(08)72943-8.

77

http://dx.doi.org/10.1007/978-3-642-32589-2_38
http://dx.doi.org/10.1007/978-3-642-32589-2_38
https://lmcs.episciences.org/5149
https://lmcs.episciences.org/5149
http://dx.doi.org/10.1007/978-3-642-45278-9_15
http://dx.doi.org/10.1007/978-3-642-45278-9_15
http://dx.doi.org/10.1002/jgt.22028
http://dx.doi.org/10.1002/jgt.22028
http://dx.doi.org/10.1016/j.ic.2014.02.004
http://arxiv.org/abs/1803.05396
http://dx.doi.org/10.1090/conm/558/11051
http://dx.doi.org/10.1145/3051095
http://dx.doi.org/10.1016/s0304-0208(08)72943-8

[83] Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk.
Polynomial-time algorithm for maximum weight independent set on P6–free
graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9,
2019, pages 1257–1271. SIAM, 2019. doi:10.1137/1.9781611975482.77.

[84] Bjarki Á. Guðmundsson, Tómas K. Magnússon, and Björn O. Sæmundsson.
Bounds and fixed-parameter algorithms for weighted improper coloring
(extended version). CoRR, pages 1–18, 2015. arXiv:1509.00099.

[85] Bjarki Á. Guðmundsson, Tómas K. Magnússon, and Björn O. Sæmundsson.
Bounds and fixed-parameter algorithms for weighted improper coloring.
Electronic Notes in Theoretical Computer Science, 322:181–195, 2016. doi:
10.1016/j.entcs.2016.03.013.

[86] Frédéric Havet, Ross J. Kang, and Jean-Sébastien Sereni. Improper coloring
of unit disk graphs. Networks, 54(3):150–164, 2009. doi:10.1002/net.
20318.

[87] Frédéric Havet and Jean-Sébastien Sereni. Improper choosability of graphs
and maximum average degree. Journal of Graph Theory, 52(3):181–199,
2006. doi:10.1002/jgt.20155.

[88] Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and
Xiao Shu. Deciding k-colorability of P5-free graphs in polynomial time.
Algorithmica, 57(1):74–81, 2010. doi:10.1007/s00453-008-9197-8.

[89] Ian Holyer. The NP-Completeness of edge-coloring. SIAM Journal on
Computing, 10(4):718–720, 1981. doi:10.1137/0210055.

[90] Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs.
European Journal of Combinatorics, 51:336–346, 2016. doi:10.1007/
978-3-642-40313-2_49.

[91] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999. doi:10.1007/BF02392825.

[92] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin
packing with fixed number of bins revisited. Journal of Computer and
System Sciences, 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

[93] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. Wiley Series
in Discrete Mathematics and Optimization. Wiley, 1995. doi:10.1002/
9781118032497.

[94] Rhys P. Jones. Hereditary properties and P-chromatic numbers, pages 83—-
88. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1974. doi:10.1017/CBO9780511662072.014.

[95] Ross J. Kang, Tobias Müller, and Jean-Sébastien Sereni. Improper colouring
of (random) unit disk graphs. Discrete Mathematics, 308(8):1438–1454,
2008. Third European Conference on Combinatorics. doi:https://doi.
org/10.1016/j.disc.2007.07.070.

78

http://dx.doi.org/10.1137/1.9781611975482.77
http://arxiv.org/abs/1509.00099
http://dx.doi.org/10.1016/j.entcs.2016.03.013
http://dx.doi.org/10.1016/j.entcs.2016.03.013
http://dx.doi.org/10.1002/net.20318
http://dx.doi.org/10.1002/net.20318
http://dx.doi.org/10.1002/jgt.20155
http://dx.doi.org/10.1007/s00453-008-9197-8
http://dx.doi.org/10.1137/0210055
http://dx.doi.org/10.1007/978-3-642-40313-2_49
http://dx.doi.org/10.1007/978-3-642-40313-2_49
http://dx.doi.org/10.1007/BF02392825
http://dx.doi.org/10.1016/j.jcss.2012.04.004
http://dx.doi.org/10.1002/9781118032497
http://dx.doi.org/10.1002/9781118032497
http://dx.doi.org/10.1017/CBO9780511662072.014
http://dx.doi.org/https://doi.org/10.1016/j.disc.2007.07.070
http://dx.doi.org/https://doi.org/10.1016/j.disc.2007.07.070

[96] Richard M. Karp. Reducibility among combinatorial problems. In Pro-
ceedings of a symposium on the Complexity of Computer Computations,
held March 20–22, 1972, at the IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York, USA, pages 85–103, 1972. URL:
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf.

[97] Minki Kim, Bernard Lidický, Tomáš Masařík, and Florian Pfender. Notes
on complexity of packing coloring. Information Processing Letters, 137:6–10,
2018. doi:10.1016/j.ipl.2018.04.012.

[98] Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël
Paulusma, and Veronika Slívová. Colouring (pr + ps)-free graphs. In
29th International Symposium on Algorithms and Computation, ISAAC
2018, December 16–19, 2018, Jiaoxi, Yilan, Taiwan, pages 5:1–5:13, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.5.

[99] Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël
Paulusma, and Veronika Slívová. Colouring (pr + ps)-free graphs. CoRR,
pages 1–21, 2018. arXiv:1804.11091.

[100] Dušan Knop, Martin Koutecký, Tomáš Masařík, and Tomáš Toufar. Simpli-
fied algorithmic metatheorems beyond MSO: Treewidth and neighborhood
diversity. In Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-
Theoretic Concepts in Computer Science: 43rd International Workshop,
WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected
Papers, pages 344–357, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-68705-6_26.

[101] Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized complexity
of fair vertex evaluation problems. CoRR, 2018. arXiv:1803.06878.

[102] Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized complexity
of fair vertex evaluation problems. In 44rd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26–30,
2019, Aachen, Germany, pages 8:1–8:16. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019.

[103] Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. Fair edge deletion
problems on treedecomposable graphs and improper colorings, 2010. URL:
http://orion.math.iastate.edu/lidicky/pub/kls10.pdf.

[104] Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. On minimum
fair odd cycle transversal. KAM-DIMATIA Series, 2010. URL: https:
//kam.mff.cuni.cz/~kamserie/serie/clanky/2010/s956.ps.

[105] Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. On Fair Edge
Deletion Problems, 2009. URL: https://kam.mff.cuni.cz/~kolman/
papers/kls09.pdf.

[106] Juha Kontinen and Hannu Niemistö. Extensions of MSO and the monadic
counting hierarchy. Information and Computation, 209(1):1–19, 2011. doi:
10.1016/j.ic.2010.09.002.

79

http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://dx.doi.org/10.1016/j.ipl.2018.04.012
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.5
http://arxiv.org/abs/1804.11091
http://dx.doi.org/10.1007/978-3-319-68705-6_26
http://arxiv.org/abs/1803.06878
http://orion.math.iastate.edu/lidicky/pub/kls10.pdf
https://kam.mff.cuni.cz/~kamserie/serie/clanky/2010/s956.ps
https://kam.mff.cuni.cz/~kamserie/serie/clanky/2010/s956.ps
https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf
https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf
http://dx.doi.org/10.1016/j.ic.2010.09.002
http://dx.doi.org/10.1016/j.ic.2010.09.002

[107] Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Com-
plexity of coloring graphs without forbidden induced subgraphs. In Graph-
Theoretic Concepts in Computer Science, 27th International Workshop, WG
2001, Boltenhagen, Germany, June 14–16, 2001, Proceedings, pages 254–262,
2001. doi:10.1007/3-540-45477-2_23.

[108] Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. New trends in the theory of
graph colorings: Choosability and list coloring. In Contemporary Trends in
Discrete Mathematics, pages 183–197. American Mathematical Society, may
1999. doi:10.1090/dimacs/049/13.

[109] Mukkai S. Krishnamoorthy and Narsingh Deo. Node-deletion NP-complete
problems. SIAM Journal on Computing, 8(4):619–625, 1979. doi:10.1137/
0208049.

[110] Peter C. B. Lam, Baogang Xu, and Jiazhuang Liu. The 4-choosability of
plane graphs without 4-cycles. Journal of Combinatorial Theory, Series B,
76(1):117–126, 1999. doi:10.1006/jctb.1998.1893.

[111] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth.
Algorithmica, 64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

[112] Michael Lampis. Model checking lower bounds for simple graphs. Logical
Methods in Computer Science, 10(1), 2014. doi:10.2168/LMCS-10(1:18)
2014.

[113] Van Bang Le, Bert Randerath, and Ingo Schiermeyer. On the complexity
of 4-coloring graphs without long induced paths. Theoretical Computer
Science, 389(1–2):330–335, 2007. doi:10.1016/j.tcs.2007.09.009.

[114] Hendrik W. Lenstra, Jr. Integer programming with a fixed number of
variables. Mathematics of Operations Research, 8(4):538–548, 1983. doi:
10.1287/moor.8.4.538.

[115] Daniel Leven and Zvi Galil. NP completeness of finding the chromatic
index of regular graphs. Journal of Algorithms, 4(1):35–44, 1983. doi:
10.1016/0196-6774(83)90032-9.

[116] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoreti-
cal Computer Science. An EATCS Series. Springer, 2004. doi:10.1007/
978-3-662-07003-1.

[117] Li-Shin Lin and Sartaj Sahni. Fair edge deletion problems. IEEE Transac-
tions on Computers, 38(5):756–761, 1989. doi:10.1109/12.24280.

[118] László Lovász. Coverings and coloring of hypergraphs. In Proceedings of the
4th Southeastern Conference on Combinatorics, Graph Theory, and Com-
puting (Florida Atlantic University, Boca Raton, March 5–8, 1973), volume
VIII, pages 3–12. Utilitas Mathematica Publishing Company, Winnipeg,
1973.

80

http://dx.doi.org/10.1007/3-540-45477-2_23
http://dx.doi.org/10.1090/dimacs/049/13
http://dx.doi.org/10.1137/0208049
http://dx.doi.org/10.1137/0208049
http://dx.doi.org/10.1006/jctb.1998.1893
http://dx.doi.org/10.1007/s00453-011-9554-x
http://dx.doi.org/10.2168/LMCS-10(1:18)2014
http://dx.doi.org/10.2168/LMCS-10(1:18)2014
http://dx.doi.org/10.1016/j.tcs.2007.09.009
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1016/0196-6774(83)90032-9
http://dx.doi.org/10.1016/0196-6774(83)90032-9
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1109/12.24280

[119] Barnaby Martin, Franco Raimondi, Taolue Chen, and Jos Martin. The
packing chromatic number of the infinite square lattice is between 13 and
15. Discrete Applied Mathematics, 225:136–142, 2017. URL: https://doi.
org/10.1016/j.dam.2017.03.013.

[120] Dániel Marx and MichałPilipczuk. Everything you always wanted to know
about the parameterized complexity of subgraph isomorphism (but were
afraid to ask). In 31st International Symposium on Theoretical Aspects of
Computer Science, STACS 2014, March 5–8, 2014, Lyon, France, pages
542–553, 2014. doi:10.4230/LIPIcs.STACS.2014.542.

[121] Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair dele-
tion problems. In T.V. Gopal, Gerhard Jäger, and Silvia Steila, edi-
tors, Theory and Applications of Models of Computation: 14th Annual
Conference, TAMC 2017, Bern, Switzerland, April 20-22, 2017, Pro-
ceedings, pages 628–642, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-55911-7_45.

[122] Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair deletion
problems. Discrete Applied Mathematics, 2019. doi:10.1016/j.dam.2019.
06.001.

[123] Tomáš Masařík. Flexibility of planar graphs without 4-cycles. In EURO-
COMB 2019, accepted. 2019. arXiv:1903.01460.

[124] Jiří Matoušek and Jaroslav Nešetřil. Invitation to Discrete Mathematics (2.
ed.). Oxford University Press, 2009.

[125] Michael Molloy and Bruce Reed. Graph Colouring and the Probabilistic
Method. Springer-Verlag Berlin Heidelberg. Springer, Berlin, Heidelberg,
2002. doi:10.1007/978-3-642-04016-0.

[126] Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, struc-
tures, and algorithms, volume 28. Springer Science & Business Media, 2012.
doi:10.1007/978-3-642-27875-4.

[127] Timm Oertel, Christian Wagner, and Robert Weismantel. Integer convex
minimization by mixed integer linear optimization. Operations Research
Letters, 42(6):424 – 428, 2014. doi:10.1016/j.orl.2014.07.005.

[128] Daniël Paulusma. Open problems on graph coloring for special graph
classes. In Graph-Theoretic Concepts in Computer Science—41st Interna-
tional Workshop, WG 2015, Garching, Germany, June 17–19, 2015, Revised
Papers, pages 16–30, 2015. doi:10.1007/978-3-662-53174-7_2.

[129] Michał Pilipczuk. Problems parameterized by treewidth tractable in single
exponential time: A logical approach. In Filip Murlak and Piotr Sankowski,
editors, Mathematical Foundations of Computer Science 2011 - 36th Inter-
national Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011.
Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

81

https://doi.org/10.1016/j.dam.2017.03.013
https://doi.org/10.1016/j.dam.2017.03.013
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.1007/978-3-319-55911-7_45
http://dx.doi.org/10.1016/j.dam.2019.06.001
http://dx.doi.org/10.1016/j.dam.2019.06.001
http://arxiv.org/abs/1903.01460
http://dx.doi.org/10.1007/978-3-642-04016-0
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1016/j.orl.2014.07.005
http://dx.doi.org/10.1007/978-3-662-53174-7_2
http://dx.doi.org/10.1007/978-3-642-22993-0_47

[130] Bert Randerath and Ingo Schiermeyer. 3-colorability in P for P6-free
graphs. Discrete Applied Mathematics, 136(2–3):299–313, 2004. doi:
10.1016/s0166-218x(03)00446-3.

[131] Bert Randerath and Ingo Schiermeyer. Vertex colouring and forbidden
subgraphs—a survey. Graphs and Combinatorics, 20(1):1–40, 2004. doi:
10.1007/s00373-003-0540-1.

[132] Bert Randerath, Ingo Schiermeyer, and Meike Tewes. Three-colourability
and forbidden subgraphs. II: polynomial algorithms. Discrete Mathematics,
251(1–3):137–153, 2002. doi:10.1016/s0012-365x(01)00335-1.

[133] Detlef Seese. Linear time computable problems and first-order descriptions.
Mathematical Structures in Computer Science, 6(6):505–526, 1996. doi:
10.1017/s0960129500070079.

[134] Christian Sloper. An eccentric coloring of trees. The Australasian Journal
of Combinatorics, 29:309–321, 2004. URL: http://ajc.maths.uq.edu.au/
pdf/29/ajc_v29_p309.pdf.

[135] Roman Soukal and Přemysl Holub. A note on packing chromatic number
of the square lattice. Electronic Journal of Combinatorics, 17(1):Note 17,
7, 2010. URL: http://www.combinatorics.org/Volume_17/Abstracts/
v17i1n17.html.

[136] Stefan Szeider. Monadic second order logic on graphs with local cardinality
constraints. ACM Transactions on Computational Logic, 12(2):1–21, 2011.
doi:10.1145/1877714.1877718.

[137] Marc Tedder, Dereck G. Corneil, Michel Habib, and Christophe Paul. Simpler
linear-time modular decomposition via recursive factorizing permutations. In
ICALP 2008, pages 634–645, 2008. doi:10.1007/978-3-540-70575-8_52.

[138] Carsten Thomassen. Every planar graph is 5-choosable. Journal of Combi-
natorial Theory, Series B, 62(1):180–181, 1994. doi:10.1006/jctb.1994.
1062.

[139] Carsten Thomassen. 3-list-coloring planar graphs of girth 5. Journal of
Combinatorial Theory, Series B, 64(1):101–107, 1995. doi:10.1006/jctb.
1995.1027.

[140] Zsolt Tuza. Graph colorings with local constraints—a survey. Discussiones
Mathematicae Graph Theory, 17(2):161–228, 1997. doi:10.7151/dmgt.
1049.

[141] Douglas B. West. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, NJ, 1996.

[142] Gerhard J. Woeginger and Jiří Sgall. The complexity of coloring
graphs without long induced paths. Acta Cybernetica, 15(1):107–117,
2001. URL: http://cyber.bibl.u-szeged.hu/index.php/actcybern/
article/view/3566.

82

http://dx.doi.org/10.1016/s0166-218x(03)00446-3
http://dx.doi.org/10.1016/s0166-218x(03)00446-3
http://dx.doi.org/10.1007/s00373-003-0540-1
http://dx.doi.org/10.1007/s00373-003-0540-1
http://dx.doi.org/10.1016/s0012-365x(01)00335-1
http://dx.doi.org/10.1017/s0960129500070079
http://dx.doi.org/10.1017/s0960129500070079
http://ajc.maths.uq.edu.au/pdf/29/ajc_v29_p309.pdf
http://ajc.maths.uq.edu.au/pdf/29/ajc_v29_p309.pdf
http://www.combinatorics.org/Volume_17/Abstracts/v17i1n17.html
http://www.combinatorics.org/Volume_17/Abstracts/v17i1n17.html
http://dx.doi.org/10.1145/1877714.1877718
http://dx.doi.org/10.1007/978-3-540-70575-8_52
http://dx.doi.org/10.1006/jctb.1994.1062
http://dx.doi.org/10.1006/jctb.1994.1062
http://dx.doi.org/10.1006/jctb.1995.1027
http://dx.doi.org/10.1006/jctb.1995.1027
http://dx.doi.org/10.7151/dmgt.1049
http://dx.doi.org/10.7151/dmgt.1049
http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3566
http://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3566

[143] David R Wood. Defective and clustered graph colouring. Electronic Journal
of Combinatorics, Dynamic Surveys:DS23:1–71, 2018. URL: http://www.
combinatorics.org/DS23.

[144] Douglas R. Woodall. Defective choosability of graphs with no edge-plus-
independent-set minor. Journal of Graph Theory, 45(1):51–56, 2004. doi:
10.1002/jgt.10153.

[145] Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
May 1-3, 1978, San Diego, California, USA, pages 253–264, 1978. doi:
10.1145/800133.804355.

[146] Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297–309, 1981. doi:10.1137/0210021.

[147] Riste Škrekovski. List improper colourings of planar graphs. Combina-
torics, Probability and Computing, 8(3):293––299, 1999. doi:10.1017/
s0963548399003752.

83

http://www.combinatorics.org/DS23
http://www.combinatorics.org/DS23
http://dx.doi.org/10.1002/jgt.10153
http://dx.doi.org/10.1002/jgt.10153
http://dx.doi.org/10.1145/800133.804355
http://dx.doi.org/10.1145/800133.804355
http://dx.doi.org/10.1137/0210021
http://dx.doi.org/10.1017/s0963548399003752
http://dx.doi.org/10.1017/s0963548399003752

84

List of Figures
1.1 Hierarchy of graph parameters considered in the thesis. An arrow

indicates that a graph parameter upper-bounds the other. 8

2.1 The reduction from Theorem 2.5 on a 4-cycle. 16
2.2 Hierarchy of graph parameters. An arrow indicates that a graph

parameter upper-bounds the other. Thus, hardness results are
implied in the direction of arrows and algorithms are implied in the
reverse direction. Green circles and red rectangle colors distinguish
between hardness results and FPT algorithms provided. Blue color
without boundary denotes that the hardness is unknown. (cw is
clique-width, nd is neighborhood diversity, mw is modular-width,
pw is path-width, sd is shrub-depth, tc is twin cover, td is tree-
depth, tw is tree-width, vc is vertex cover. See [41] for definitions.)
. 19

3.1 All possible connected components in G[N2 ∪N3]. 28
3.2 The situation in Branching II. 30
3.3 The situation in Branching IV if t1 ∈ N1 and if vertices sa and sb

exist. 34
3.4 The situation in Branching VII. Dashed lines denote edges that

might or might not be there. 38

4.1 Hierarchy of graph parameters with depicted complexity of the
Fair L Vertex Evaluation problem on the left side and the
Fair L Vertex Evaluation problem on the right side. An
arrow indicates that a graph parameter upper-bounds the other.
Thus, hardness results are implied in the direction of arrows, and
FPT algorithms are implied in the reverse direction. Green colors
indicate FPT results for MSO2, orange are FPT for MSO1, blue are
open, and red are hardness results. Descriptions of the relations
and parameteres are in Section 2.2.1. 46

5.1 Hierarchy of graph parameters with depicted complexity of the
Fair L Vertex Evaluation problem. An arrow indicates that a
graph parameter upper-bounds the other. Thus, hardness results
are implied in the direction of arrows, and FPT algorithms are
implied in the reverse direction. Green colors indicate FPT results
for MSO2, orange are FPT for MSO1, blue are open, and red are
hardness results. We denote treewidth by tw, shrubdepth by sd,
and clique-width by cw. We refer to book [41] for definitions.
Other parameters and their respective abbreviations are defined in
Subsection 5.1.2. 54

5.2 Example of a 7 × 7 A-shape. All cliques of size 3 will be assigned
to yellow (light gray) fields, while cliques of size 8 will be assigned
to orange (darker gray) fields. 58

85

5.3 An example of uncertainty in computation of objective function.
The value in the last row depends on the size of the clique we are
assigning to those cells. The value in the cell is how much we pay
for any compatible clique assigned to this cell. 58

5.4 An overview of the reduction in the proof of Theorem 5.2. The
gray vertices are enforced to be a part the fair vertex cover. If a
vertex fair objective was lowered, then the resulting threshold is
beneath the vertex (the group of vertices). 61

86

List of Tables
1.1 A summary and a comparisons of choosability and respective results

in the flexibility setting on subclases of planar graphs. Non-implied
bounds are accompagned with the respective citation. 5

1.2 Comparisons of running times between naive exponential (2n), XP
(nk) and FPT (2kn) algorithms on a current computer (4 cores,
3GHz). Naive running times are in the first row in brackets, FPT |
XP running times are within the inner-fields of the table. Shortcut
yrs stands for years. 6

3.1 Summary for Pt-free graphs. 22

4.1 The table summarize metatheorem results (with a citation), in terms
of FPT complexity and used logic, parameterized by structural
parameters. Green cells denote FPT results and red cells represent
hardness results. Logic L in metatheorems is specified by a logic
used in the respective theorem. Symbol L∅ denotes any logic that
can express an edgeless graph. Symbol ✓denotes implied results. A
question mark (?) indicates that the complexity is unknown. Fair
edge problems are delimited from fair vertex problems since there
are no apparent relations between them. 45

5.1 The table summarizes some related (with a citation) and all the
presented (with a reference) results on the studied parameters.
Green cells denote FPT results, and red cells represent hardness
results. Logic L in metatheorems is specified by a logic used in the
respective theorem. Symbol ∗ denotes implied results from previous
research and symbol ✓denotes new implied results. A question
mark (?) indicates that the complexity is unknown. The Fair
Edge L Deletion problem is delimited from Vertex problems
since there are no apparent relations between them. 53

87

88

List of Publications
By convention of my research area, author names are in alphabetical order, except
papers [13] and [10]. Publications in each category are listed in the chronological
order.

Journal Publications

[1] Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair dele-
tion problems. In Discrete Applied Mathematics, available online, 2019.
doi:10.1016/j.dam.2019.06.001.
Also in Theory and Applications of Models of Computation—14th Annual
Conference, TAMC 2017, Bern, Switzerland, April 20–22, 2017, Proceedings,
pages 628–642, 2017. doi:10.1007/978-3-319-55911-7_45.

[2] Zdeněk Dvořák, Tomáš Masařík, Jan Musílek, and Ondřej Pangrác. Triangle-
free planar graphs with the smallest independence number. Journal of Graph
Theory, 90(3):443–454, 2019. doi:10.1002/jgt.22406.

[3] Minki Kim, Bernard Lidický, Tomáš Masařík, and Florian Pfender. Notes
on complexity of packing coloring. Information Processing Letters, 137:6–10,
2018. doi:10.1016/j.ipl.2018.04.012.

[4] Dušan Knop and Tomáš Masařík. Computational complexity of dis-
tance edge labeling. Discrete Applied Mathematics, 246:80–98, 2018.
doi:10.1016/j.dam.2017.01.007.
Also in Combinatorial Algorithms—26th International Workshop, IWOCA
2015, Verona, Italy, October 5–7, 2015, Revised Selected Papers, pages 287–
298, 2015. doi:10.1007/978-3-319-29516-9_24.

Conference Publications
(excluded those published in journals)

[5] Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel
Sorge. Packing directed circuits quarter-integrally. Accepted to ESA 2019,
2019.

[6] Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized complexity
of fair vertex evaluation problems. Accepted to MFCS 2019, 2019.
Full version on CoRR, pages 1–23, 2018. arXiv:1803.06878.

[7] Tomáš Masařík. Flexibility of planar graphs without 4-cycles. Accepted to
EUROCOMB 2019, 2019.
Full version on CoRR, pages 1–6, 2019. arXiv:1903.01460.

[8] Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël
Paulusma, and Veronika Slívová. Colouring (Pr + Ps)-free graphs. In
29th International Symposium on Algorithms and Computation, ISAAC
2018, December 16–19, 2018, Jiaoxi, Yilan, Taiwan, pages 5:1–5:13, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.5.
Full version on CoRR, pages 1–21, 2018. arXiv:1804.11091.

89

https://doi.org/10.1016/j.dam.2019.06.001
https://doi.org/10.1007/978-3-319-55911-7_45
https://doi.org/10.1002/jgt.22406
http://doi.org/10.1016/j.ipl.2018.04.012
http://doi.org/10.1016/j.dam.2017.01.007
http://doi.org/10.1007/978-3-319-29516-9_24
http://arxiv.org/abs/1803.06878
http://arxiv.org/abs/1903.01460
http://doi.org/10.4230/LIPIcs.ISAAC.2018.5
http://arxiv.org/abs/1804.11091

[9] Pavel Dvořák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masařík, Tomáš
Toufar, and Pavel Veselý. Parameterized approximation schemes for Steiner
trees with small number of steiner vertices. In 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28–March 3, 2018,
Caen, France, pages 26:1–26:15, 2018.doi:10.4230/LIPIcs.STACS.2018.26.
Full version on CoRR, pages 1–24, 2018. arXiv:1710.00668.

[10] Jana Novotná, Milan Hladík, and Tomáš Masařík. Duality gap in interval
linear programming. In 14th International Symposium on Operational Re-
search, SOR 2017, September 27–29, 2017, Bled, Slovenia, pages 501–506,
2017. http://sor17.fov.uni-mb.si/sor-publications/.
Full version on CoRR, pages 1–13, 2018. arXiv:1802.05795.

[11] Dušan Knop, Martin Koutecký, Tomáš Masařík, and Tomáš Toufar. Simpli-
fied algorithmic metatheorems beyond MSO: treewidth and neighborhood
diversity. In Graph-Theoretic Concepts in Computer Science—43rd Interna-
tional Workshop, WG 2017, Eindhoven, The Netherlands, June 21–23, 2017,
Revised Selected Papers, pages 344–357, 2017. doi:10.1007/978-3-319-68705-
6_26.
Full version on CoRR, pages 1–30, 2018. arXiv:1703.00544.

[12] Pavel Dvořák, Dušan Knop, and Tomáš Masařík. Anti-path cover on sparse
graph classes. In Proceedings 11th Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, MEMICS 2016, Telč, Czech
Republic, October 21–23 2016, pages 82–86, 2016. doi:10.4204/EPTCS.233.8.

Miscellaneous

[13] Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard
Eiben. Steiner Tree Heuristics for PACE 2018 Challenge Track C. public
repository, 2018. https://github.com/goderik01/PACE2018.

Submitted
(excluded those already published)

[14] Konrad Dabrowski, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and
Paweł Rzążewski. Harnessing the power of atoms. Manuscript, 2019+.

[15] Radek Hušek, Dušan Knop, and Tomáš Masařík. Approximation Algorithms
for Steiner Tree Based on MST and Star Contractions. Manuscript, 2019+.

[16] Julien Baste, Michael R. Fellows, Lars Jaffke, Tomáš Masařík, Mateus de
Oliveira Oliveira, Geevarghese Philip, and Frances A. Rosamond. Diversity
in Combinatorial Optimization. CoRR, pages 1–14, 2019. arXiv:1903.07410.

[17] Zdeněk Dvořák, Tomáš Masařík, Jan Musílek, and Ondřej Pangrác. Flex-
ibility of planar graphs of girth at least six. CoRR, pages 1–11, 2019.
arXiv:1902.04069.

90

http://doi.org/10.4230/LIPIcs.STACS.2018.26
http://arxiv.org/abs/1710.00668
http://sor17.fov.uni-mb.si/sor-publications/
http://arxiv.org/abs/1802.05795
http://doi.org/10.1007/978-3-319-68705-6_26
http://doi.org/10.1007/978-3-319-68705-6_26
http://arxiv.org/abs/1703.00544
http://doi.org/10.4204/EPTCS.233.8
https://github.com/goderik01/PACE2018
http://arxiv.org/abs/1903.07410
http://arxiv.org/abs/1902.04069

[18] Zdeněk Dvořák, Tomáš Masařík, Jan Musílek, and Ondřej Pangrác. Flexibility
of triangle-free planar graphs. CoRR, pages 1–28, 2019. arXiv:1902.02971.

[19] Jinha Kim, Ryan R. Martin, Tomáš Masařík, Warren Shull, Heather C. Smith,
Andrew Uzzell, and Zhiyu Wang. On difference graphs and the local dimension
of posets. CoRR, pages 1–13, 2018. arXiv:1803.08641.

91

http://arxiv.org/abs/1902.02971
http://arxiv.org/abs/1803.08641

92

	Introduction
	Graph Problems and Decision Problems
	Graph Colorings and Labelings
	Hereditary Graph Classes
	Parameterized Complexity
	Graph Logics
	Organization of Thesis

	Complexity of Packing Coloring
	Introduction
	Chordal and Interval graphs
	Conclusion

	Coloring of H-free Graphs
	Introduction
	The Proof of Theorem 3.1
	The Proof of Corollary 3.2
	Conclusions

	Survey on Fair problems
	Definition of Fair Problems
	Specific Problems
	Metatheorems
	Open Problems and Further Research Direction

	Methatheorems for Fair Problems
	Introduction
	Metatheorems for Fair Evaluation
	The Fair VC Problem
	Hardness of Possible Extensions
	Conclusions

	Bibliography
	List of Figures
	List of Tables
	List of Publications
	
	
	
	

